[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Indexing by

AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE

..
Related Links

AWT IMAGE
AWT IMAGE

..
QR Code

Orcid ID
..
:: Volume 10, Issue 40 (2020) ::
2020, 10(40): 65-74 Back to browse issues page
Long-term Analysis of Sea Surface wind field over the Persian Gulf Basin, Using reanalysis data, NCDC-BSW and in situ observations during a 23-year period
Elaheh Owlad , Hasan Khaleghi-Zavareh , Parviz Irannejad , Parvin Ghafarian
Iranian National Institute for Oceanography and Atmospheric Sciences , e.owlad@inio.ac.ir
Abstract:   (4068 Views)
Abstract
Sea surface wind speed and direction data with high spatial and temporal resolution is essential to having realistic perception and being able to forecast Air-Sea interaction. Lack of enough field measurements over the Persian Gulf has been always a serious issue in meteorological studies over this area. The object of this study is to determine the mean wind field over the Persian Gulf and find out the trend of the wind in this area. To do so, three data sets including: buoy and synoptic observed data, ERA-Interim reanalysis data and blending satellite retrieved data (from NCDC-BSW) are used for long-term analysis of surface wind field over the Persian Gulf. After a comparison of in-situ observation data with estimations performed by the reanalysis model and satellite data and verification of these datasets, wind fields were extracted using satellite and reanalysis data and the long-term wind trend was retrieved from 1988 to 2010 for 23 years. Results illustrate a relative increase in the wind speed estimated from reanalysis data and a relative decrease in the wind speed estimated from satellite data. Considering everything, it could be concluded that the satellite data has had better performance in estimating wind speed. So that, long-term investigation of the increase-decrease trend in wind speed at divergent stations indicate an effect of summer and winter Shamal on the maximum and minimum wind speed and regime, that were estimated in the Persian Gulf region. Considering this effect, the highest winds in winter occur near Bushehr area while the maximum winds in summer are seen in lower latitudes and near the center of the Persian Gulf.
Keywords: Wind field, reanalysis data, Satellite data, long-term, Persian Gulf, Shamal wind.
Full-Text [PDF 1064 kb]   (925 Downloads)    
Type of Study: Research/ Original/ Regular Article | Subject: Marine Meteorology / Climate Change
Received: 2019/06/1 | Revised: 2021/05/12 | Accepted: 2019/11/2 | ePublished: 2020/05/20
References
1. اولاد، ا.؛ ایران نژاد، پ.؛ و غفاریان، پ.، ۱۳۹۶. بررسی داده-های مختلف باد سطح دریا بر روی حوضه خلیج¬فارس. چهارمین کنفرانس بین¬المللی اقیانوس¬شناسی خلیج¬فارس. تهران، وزارت راه و شهرسازی - سازمان هواشناسی کشور، https://www.civilica.com/Paper-ICPGO04-ICPGO04_035.html
2. کشوری، ش.؛ خالقی زواره، ح.؛ و ریحانی، م.، ۱۳۸۵. تعیین الگوی باد در خلیج فارس (ایستگاه‌های آبادان، بوشهر، کیش و ابوموسی). هفتمین همایش بین‌المللی سواحل، بنادر و سازه‌های دریایی. تهران، سازمان بنادر و کشتی‌رانی.
3. کمیجانی، ف.؛ نصراللهی، ع.؛ نظری، ن.؛ و ناهید، ش.، ۱۳۹۳. تحلیل رژیم باد خلیج¬فارس با استفاده از داده¬های ایستگاه-های هواشناسی همدیدی. مجله نیوار، شماره ۸۴-۸۵ ، صفحات ۴۴-۲۷.
4. Benschop, H., 1996. Winds nel heidsmetin gen op zeestations en kuststations: herleiding waarden wjndStt{é}lheld naar 10-meter niveau.
5. Bentamy, A., Quilfen, Y., Queffeulou, P., Cavanie, A., 1994. Calibration of the ERS-1 scatterometer C-band model. Inst. Fran{ç}aise Rech. pour l'Exploitation la Mer, Fr. IFREMER DRO/OS-94-01.
6. Carvalho, D., Rocha, A., Gómez-Gesteira, M., 2012. Ocean surface wind simulation forced by different reanalyses: Comparison with observed data along the Iberian Peninsula coast. Ocean Model. 56, 31-42. [DOI:10.1016/j.ocemod.2012.08.002]
7. Carvalho, D., Rocha, A., Gómez-Gesteira, M., Santos, C.S., 2014. Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sens. Environ. 152, 480-492. [DOI:10.1016/j.rse.2014.07.017]
8. Dee, D.P., Uppala, S.M., Simmons, a. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. a., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, a. C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, a. J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, a. P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N., Vitart, F., 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553-597. [DOI:10.1002/qj.828]
9. Ebuchi, N., Graber, H.C., Caruso, M.J., 2002. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Ocean. Technol. 19, 2049-2062. https://doi.org/10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2 [DOI:10.1175/1520-0426(2002)0192.0.CO;2]
10. Freilich, M.H., Dunbar, R.S., 1999. The accuracy of the NSCAT 1 vector winds: Comparisons with National Data Buoy Center buoys. J. Geophys. Res. Ocean. 104, 11231-11246. [DOI:10.1029/1998JC900091]
11. Hassanzadeh, S., Hosseinibalam, F., Rezaei-Latifi, A., 2011. Numerical modelling of salinity variations due to wind and thermohaline forcing in the Persian Gulf. Appl. Math. Model. 35, 1512-1537. [DOI:10.1016/j.apm.2010.09.029]
12. Kämpf, J., Sadrinasab, M., 2005. The circulation of the Persian Gulf: a numerical study. Ocean Sci. Discuss. 2, 129-164. [DOI:10.5194/osd-2-129-2005]
13. Liu, W.T., Tang, W., 1996. Equivalent neutral wind. National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology.
14. Masuko, H., Arai, K., Ebuchi, N., Konda, M., Kubota, M., Kutsuwada, K., Manabe, T., Mukaida, A., Nakazawa, T., Nomura, A., others, 2000. Evaluation of vector winds observed by NSCAT in the seas around Japan. J. Oceanogr. 56, 495-505. [DOI:10.1023/A:1011192725800]
15. Membery, D.A., 1983. Low level wind profiles during the Gulf Shamal. Weather 38, 18-24. [DOI:10.1002/j.1477-8696.1983.tb03638.x]
16. Owlad, E., Ghafarian, P., Khaleghi-zavareh, H., Irannejad, P., 2019. Comparison of Reanalysis , Blending Satellite Data and Buoy Surface Wind Data over the Persian Gulf Basin for 2009 7.
17. Ruti, P.M., Marullo, S., D'Ortenzio, F., Tremant, M., 2008. Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: Analyses, QuikSCAT and buoy data. J. Mar. Syst. 70, 33-48. [DOI:10.1016/j.jmarsys.2007.02.026]
18. Schroeder, L.C., Boggs, D.H., Dome, G., Halberstam, I.M., Jones, W.L., Pierson, W.J., Wentz, F.J., 1982. The relationship between wind vector and normalized radar cross section used to derive SEASAT-A satellite scatterometer winds. J. Geophys. Res. Ocean. 87, 3318-3336. [DOI:10.1029/JC087iC05p03318]
19. Stull, R.B., 1988. An Introduction to Boundary Layer Meteorology Kluwer Academic Publishers Dordrecht 666 Google Scholar. [DOI:10.1007/978-94-009-3027-8]
20. UNEP, 1999. Overview on land-based sources and activities affecting the marine environment in the ROPME Sea Area. UNEP/GPA Co-ordination Office & ROPME. 127p. UNEP Regional Seas Reports and Studies No. 168.
21. Walmsley, J.L., 1988. On theoretical wind speed and temperature profiles over the sea with applications to data from Sable Island, Nova Scotia. Atmosphere-Ocean 26, 203-233. [DOI:10.1080/07055900.1988.9649300]
22. Wentz, F.J., 1997. A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res. Ocean. 102, 8703-8718. [DOI:10.1029/96JC01751]
23. Wentz, F.J., Cardone, V.J., Fedor, L.S., 1982. Intercomparison of wind speeds inferred by the SASS, altimeter, and SMMR. J. Geophys. Res. 87, 3378-3384. [DOI:10.1029/JC087iC05p03378]
24. Yamartino, R.J., 1984. A comparison of several "single-pass" estimators of the standard deviation of wind direction. J. Clim. Appl. Meteorol. 23, 1362-1366. https://doi.org/10.1175/1520-0450(1984)023<1362:ACOSPE>2.0.CO;2 [DOI:10.1175/1520-0450(1984)0232.0.CO;2]
25. Yu, Y., Notaro, M., Kalashnikova, O. V, Garay, M.J., 2015. Journal of Geophysical Research : Atmospheres 289-305. [DOI:10.1002/2015JD024063]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Owlad E, Khaleghi-Zavareh H, Irannejad P, Ghafarian P. Long-term Analysis of Sea Surface wind field over the Persian Gulf Basin, Using reanalysis data, NCDC-BSW and in situ observations during a 23-year period. Journal of Oceanography 2020; 10 (40) :65-74
URL: http://joc.inio.ac.ir/article-1-1550-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 40 (2020) Back to browse issues page
نشریه علمی پژوهشی اقیانوس شناسی Journal of Oceanography
Persian site map - English site map - Created in 0.09 seconds with 42 queries by YEKTAWEB 4642