[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Indexing by

AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE

..
Related Links

AWT IMAGE
AWT IMAGE

..
QR Code

Orcid ID
..
:: Volume 10, Issue 40 (2020) ::
2020, 10(40): 55-63 Back to browse issues page
Predicting the potential distribution of Avicennia marina across mangrove forest area in Southern Iran using Biochemical datase
Razieh Ghayoumi , Elham Ebrahimi
Research group of Biodiversity and Biosafety, Research Center for Environment and Sustainable Development, RCESD, Department of Environment, Tehran, Islamic Republic of Iran , r.ghayoumi@gmail.com
Abstract:   (4687 Views)
Abstract:
Distribution and ecological preferences of aquatic organisms have often not been studied. Species Distribution Modeling can improve our knowledge and enhance the ecosystem management and protection. This study conducted in 2017 with the objective of predicting the potential suitable habitat for Avicennia marina and the most important environmental factors influencing its distribution. Mangroves as the world's valuable habitats with high biomass and productivity, play an important role for fauna and flora both land and sea, providing shelter, nursing and feeding grounds. In this study, 9 biochemical variables from Bio-ORACLE database were compiled. The correlation coefficient between each pair of variables was calculated to identify highly correlated variables and reduce multicollinearity. Finally, the distribution model was produced with MaxEnt. Results show that suitable habitats for mangrove distribution have placed in the Eastern part of the Persian Gulf and the Oman Sea. Moreover, Chlorophyll-a minimum range, summaximum and pH were found to be the top variables affecting the distribution. Results can be used in a decision-making framework that helps conservation outcomes deliver as a result of managers’ strategy.
Keywords: Mangrove forests, Avicennia marina, Ocean dataset, Species Distribution Modeling
Full-Text [PDF 562 kb]   (1159 Downloads)    
Type of Study: Research/ Original/ Regular Article | Subject: Marine Biology
Received: 2020/05/15 | Revised: 2020/09/5 | Accepted: 2020/05/15 | ePublished: 2020/05/15
References
1. Danehkar, A., 1994. Study on Sirik region mangroves. Master Thesis, Tarbiat Modarres University, Noor. (in Persian).
2. Danehkar, A., 2006. Management and development plan of Mangrove forests in Hormozgan province. First volume. Natural Resources Office of Hormozgan Province: Nature and Natural Resources Consulting Engineers. (in Persian).
3. Safyari, Sh., 2017. Mangrove Forests in Iran. Nature of Iran, (2) 2: 49-57. (in Persian).
4. Safyari, Sh. and Mansouri, M., 2008. Development of Mangrove Forests, Publications of the Forestry, Rangeland and Watershed Organization of Iran Natural Resources Office of Hormozgan Province, 498 p. (in Persian).
5. Erfani, M., Nouri, Gh., Danehkar, A., Mohajer Maravi, M. and Mahmoudi, B., 2009. Study of mangrove forests vegetation parameters in Goater Bay in southeastern Iran. Taxonomy and Biosystematics Journal, (1) 1: 33-46. (in Persian).
6. Alongi D. M., Perillo G. M. E., Wolanski E., Cahoon D. R. and Brinson M. M., 2009. Paradigm shifts in mangrove biology. Coastal Wetlands: An integrated ecosystem approach. Elsevier, Londres, Inglaterra, 615-640.
7. Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling. 157, 101-118. [DOI:10.1016/S0304-3800(02)00205-3]
8. Bosso, L., Scelza, R., Varlese, R., Meca, G., Testa, A., Rao, M. A., and Cristinzio, G., 2016. Assessing the effectiveness of Byssochlamys nivea and Scopulariopsis brumptii in pentachlorophenol removal and biological control of two Phytophthora species. Fungal biology, 120:4, 645-653.‏ [DOI:10.1016/j.funbio.2016.01.004]
9. Brandt, A. R., Heath, G. A., Kort, E. A., O'sullivan, F., Pétron, G., Jordaan, S. M and Wofsy, S., 2014. Methane leaks from North American natural gas systems. Science, 343(6172), 733-735. [DOI:10.1126/science.1247045]
10. Carrillo-Angeles, I. G., Suzán-Azpiri, H., Mandujano, M. C., Golubov, J., Martínez-Ávalos, J. G., 2016. Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). Journal of Arid Environments, 124, 310-317. [DOI:10.1016/j.jaridenv.2015.09.001]
11. Crase, B., Vesk, P., V., Liedloff, A. and Wintle, B., A., 2015. Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change. Global Change Biology 21:8, 3005-3020. [DOI:10.1111/gcb.12930]
12. Dudik, M., Philips, S. J., and Shapire, R. E., 2004. A maximum entropy approach to species distribution modelling. In Proceedings of the 21st International Conference on Machine Learning. [DOI:10.1145/1015330.1015412]
13. Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv., 61, 1-10. [DOI:10.1016/0006-3207(92)91201-3]
14. Giovannelli, J. F., Idier, J., Muller, D., and Desodt, G., 2001. Regularized adaptive long autoregressive spectral analysis. IEEE transactions on Geoscience and Remote Sensing, 39:10, 2194-2202.‏ [DOI:10.1109/36.957282]
15. Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J. and Moritz, C., 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution. 58, 1781-1793. [DOI:10.1111/j.0014-3820.2004.tb00461.x]
16. Guisan, A. and Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling. 135, 147-186. [DOI:10.1016/S0304-3800(00)00354-9]
17. Guisan, A. and Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters. 8, 993-1009. [DOI:10.1111/j.1461-0248.2005.00792.x]
18. Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis Lewis, I., Sutcliffe, P. R., Tulloch, A. I., Tracey J. Regan., Brotons, L., McDonald Madden, E., Martin, T.G., Mantyka Pringle, C., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith. J., Schwartz, M.W., Wintle, B.A., Broennimann. O., Austin. M., Ferrier. S., Kearney, M.R., H.P. Possingham., Buckley. Y. M., and Martin, T. G., 2013. Predicting species distributions for conservation decisions. Ecology letters, 16(12), 1424-1435.‏ [DOI:10.1111/ele.12189]
19. Hannah, L., Midgley, G., Andelman, S., Araújo, M., Hughes, G., Martinez-Meyer, E., Richard, P., and Williams, P., 2007. Protected area needs in a changing climate. Frontiers in Ecology and the Environment, 5(3), 131-138.‏ [DOI:10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2]
20. ITTO (the International Tropical Timber Organization)., 2012. Tropical Forest Update. Newsletter: 21(2). Last accessed on 22 July 2017 at URl: http://www.itto.int/tfu/id=2890.
21. Martínez-Meyer, E., Peterson, A.T. and Navarro-Sigüenza, A.G., 2004. Evolution of seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae). Proceedings of the Royal Society of London B: Biological Sciences, 271, 1151-1157. [DOI:10.1098/rspb.2003.2564]
22. McCarty, J.P., Wolfenbarger, L. L. and Wilson, J. A., 2009. Biological Impacts of Climate Change.Encyclopedia of Life Sciences (ELS). Chichester: John Wiley and Sons, Ltd. [DOI:10.1002/9780470015902.a0020480]
23. Nitto, D. D., Neukermans, G., Koedam, N., Defever, H., Pattyn, F., Kairo, J. G., and Dahdouh-Guebas, F., 2014. Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences, 11(3), 857-871.‏ [DOI:10.5194/bg-11-857-2014]
24. Peterson, A.T., 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics. 3, 59-72. [DOI:10.17161/bi.v3i0.29]
25. Phillips, S. J. Anderson, R. P. Schapire, R. E., 2006. Maximum entropy modeling of species geographic distributions. Ecological models. 190, 231-259. [DOI:10.1016/j.ecolmodel.2005.03.026]
26. Redding, D.W and Mooers, A.O., 2006. Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20, 1670-1678. [DOI:10.1111/j.1523-1739.2006.00555.x]
27. Renner, I. W., and Warton, D. I., 2013. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69(1), 274-281.‏ [DOI:10.1111/j.1541-0420.2012.01824.x]
28. Robinson, L. M., Elith, J., Hobday, A. J., Pearson, R. G., Kendall, B. E., Possingham, H. P., and Richardson, A. J., 2011. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography, 20(6), 789-802.‏ [DOI:10.1111/j.1466-8238.2010.00636.x]
29. Royle, J. A., Chandler, R. B., Yackulic, C., & Nichols, J. D., 2012. Likelihood analysis of species occurrence probability from presence only data for modelling species distributions. Methods in Ecology and Evolution, 3 (3), 545-554. [DOI:10.1111/j.2041-210X.2011.00182.x]
30. Shahparian M, Fakheran S, Moradi H, Hemami M, Shafiezadeh M. Modeling Habitat Suitability of the Dolphins Using MaxEnt in Makran Sea, South of Iran. joc.2017; 7 (28):47-56. (in Persian). [DOI:10.18869/acadpub.joc.7.28.47]
31. Singh, H. S., 2003. Vulnerability and adaptability of Tidal forests in response to climate change in India.Indian forester, Indian for, 129(6): 749-756.
32. Smeraldo, S., Di Febbraro, M., Cirovic, D., Bosso, L., Trbojevic, I. and Russo, D., 2017. Species distribution models as a tool to predict range expansion after reintroduction: A case study on Eurasian beavers (Castor fiber). Journal for nature conservation, 37, 12-20.‏ [DOI:10.1016/j.jnc.2017.02.008]
33. Spalding, M. D., F. Blasco and C. Field., 1997. World Mangrove Atlas. Okinava, Japan: The international Society for Mangrove ecosystem. 178 pp.
34. Spalding, M., Kainuma, M., and Collins, L. 2010., World atlas of mangroves. A collaborative project of ITTO, ISME, FAO, UNEP-WCMC. London, UK: Earthscan, 319 pp.
35. Spalding M, McIvor A, Tonneijck FH, Tol S and van Eijk P., 2014. Mangroves for coastal defence. Guidelines for coastal managers and policy makers. Published by Wetlands International and The Nature Conservancy. 42 pp.
36. Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley,B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Townsend Peterson, A.T., Phillips, O.L. and Williams, S.E., 2004. Extinction risk from climate change. Nature. 427, 145-148. [DOI:10.1038/nature02121]
37. Thuiller, W., Richardson, D.M., Pysek, P., Midgley, G.F., Hughes, G.O. and Rouget, M., 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11, 2234-2250. [DOI:10.1111/j.1365-2486.2005.001018.x]
38. Vane-Wright, R. I., Humphries, C. J., and Williams, P. H., 1991. What to protect? -Systematics and the agony of choice. Biological conservation, 55:3, 235-254.‏ [DOI:10.1016/0006-3207(91)90030-D]
39. Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., and Veran, S. 2013., Presence only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution, 4:3, 236-243. [DOI:10.1111/2041-210x.12004]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghayoumi R, Ebrahimi E. Predicting the potential distribution of Avicennia marina across mangrove forest area in Southern Iran using Biochemical datase. Journal of Oceanography 2020; 10 (40) :55-63
URL: http://joc.inio.ac.ir/article-1-1530-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 40 (2020) Back to browse issues page
نشریه علمی پژوهشی اقیانوس شناسی Journal of Oceanography
Persian site map - English site map - Created in 0.1 seconds with 42 queries by YEKTAWEB 4657