[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Indexing by

AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE

..
Related Links

AWT IMAGE
AWT IMAGE

..
QR Code

Orcid ID
..
:: Volume 11, Issue 41 (2020) ::
2020, 11(41): 39-48 Back to browse issues page
Selective Isolation of the Persian Gulf Sponge-associated Actinobacteria and Evaluation of Cytotoxic and Antioxidant activity of Their Metabolites
Mohsen Gozari , Saeid Tamadoni jahromi , Sajjad Pourmozaffar , Siamak Behzadi
Persian Gulf and Oman Sea ecological research institute , m_gozari@yahoo.com
Abstract:   (3522 Views)
Sponge-associated actinobacteria are the prolific sources of marine natural products. The aims of the present study were to propose a process for selective isolation of sponge-associated actinobacteria and to find isolates that produce antioxidant and cytotoxic metabolites. We collected 4 sponge species from the Larak Island, Persian Gulf using scuba diving. The selective isolation process was performed by 4 culture media and 7 physical and chemical treatments. Antioxidant activity of extracted metabolites were evaluated using DPPH radical scavenging activity. Evaluation of cytotoxicity of the extracted metabolites was carry out using brine-shrimp microwell cytotoxicity assay. Out of 114 actinobacterial isolates, 38.59% was isolated from sponge Dysedia avara. Marine sponge agar medium exhibited maximum efficiency and isolated 44 isolate of actinobacteria. While, most non streptomyces-like isolates were derived by marine zobell agar.  Heat treatment isolated 35.08% of actinobacterial isolates and recovered their most frequency. Approximately, 46 % of the extracted metabolites scavenged more than 90% of the DPPH radicals and their IC50 ranges from 230.1 to 775.34 µg/ml. While, 44% of the extracted metabolites were able to kill more than 90% of the Artemia cells at LC50 range from 236.3 to 565.3 µg/ml. These results represented a selective isolation process for sponge associated-actinobacteria and also could provide an evidence that confirms the active association of the actinobacteria with the Persian Gulf sponges.
 
Keywords: Sponge microbiome, Isolation medium, Cytotoxic metabolites, Selective treatments, DPPH scavenging activity
Full-Text [PDF 709 kb]   (701 Downloads)    
Type of Study: Research/ Original/ Regular Article | Subject: Marine Biology
Received: 2020/02/3 | Revised: 2021/02/21 | Accepted: 2020/05/11 | ePublished: 2020/09/21
References
1. Atta-ur-Rahman, C.M., Thomsen WJ. 2001. Bioassay techniques for drug development. Pp. eds. Harwood Academic Publishers, Australia. [DOI:10.3109/9780203304532]
2. Bredholdt, H.; Galatenko, O.A.; Engelhardt, K.; Fjærvik, E.; Terekhova, L.P.; Zotchev, S.B., 2007. Rare actinomycete bacteria from the shallow water sediments of the trondheim fjord, norway: Isolation, diversity and biological activity. Environmental microbiology, 9: 2756-2764. [DOI:10.1111/j.1462-2920.2007.01387.x]
3. Bredholt, H.; Fjærvik, E.; Johnsen, G.; Zotchev, S.B., 2008. Actinomycetes from sediments in the trondheim fjord, norway: Diversity and biological activity. Marine drugs, 6: 12-24. [DOI:10.3390/md6010012]
4. Brinkmann, C.M.; Marker, A.; Kurtböke, D.I., 2017. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity, 9: 40. [DOI:10.3390/d9040040]
5. Bruns, A.; Cypionka, H.; Overmann, J., 2002. Cyclic amp and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central baltic sea. Applied and Environmental Microbiology, 68: 3978-3987. [DOI:10.1128/AEM.68.8.3978-3987.2002]
6. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R., 2019. Marine natural products. Natural product reports, 36: 122-173. [DOI:10.1039/C8NP00092A]
7. Colwell, R.R.; Grimes, D.J., 2000. Nonculturable microorganisms in the environment. ASM press. [DOI:10.1007/978-1-4757-0271-2]
8. Goodfellow, M.; Kämpfer, P.; Busse, H.-J.; Trujillo, M.E.; Suzuki, K.-i.; Ludwig, W.; Whitman, W.B., 2012. Bergey's manual® of systematic bacteriology: Volume five the actinobacteria, part a. Springer New York. [DOI:10.1007/978-0-387-68233-4]
9. Gozari, M.; Bahador, N.; Jassbi, A.R.; Eftekhar, E., 2018a. Isolation and evaluation of cytotoxic and antioxidant activity of bioactive metabolites of cultured actinobacteria in persian gulf marine sediments. Journal of Aquatic Ecology, 7: 57-67.
10. Gozari, M.; Bahador, N.; Jassbi, A.R.; Mortazavi, M.; Eftekhar, E., 2018b. Antioxidant and cytotoxic activities of metabolites produced by a new marine streptomyces sp. Isolated from the sea cucumber holothuria leucospilota. Iranian Journal of Fisheries Sciences, 17: 413-426.
11. Gozari, M.; Bahador, N.; Jassbi, A.R.; Mortazavi, M.S.; Hamzehei, S.; Eftekhar, E., 2019a. Isolation, distribution and evaluation of cytotoxic and antioxidant activity of cultivable actinobacteria from the oman sea sediments. Acta Oceanologica Sinica, 38: 84-90. [DOI:10.1007/s13131-019-1515-2]
12. Gozari, M.; Bahador, N.; Mortazavi, M.S.; Eftekhar, E.; Jassbi, A.R., 2019b. An "olivomycin a" derivative from a sponge-associated streptomyces sp. Strain sp 85. 3 Biotech, 9: 439-450. [DOI:10.1007/s13205-019-1964-5]
13. Gozari, M.; Mortazavi, M.; Ebrahimi, M.; Dehghani, R., 2016. Isolation, identification and evaluation of antimicrobial activity of actinomycetes from marine sediments of persian gulf (hormozgan province). Iranian Scientific Fisheries Journal, 25: 81-94.
14. Gozari, M.; Zaheri, A.; Jahromi, S.T.; Gozari, M.; Karimzadeh, R., 2019c. Screening and characterization of marine actinomycetes from the northern oman sea sediments for cytotoxic and antimicrobial activity. International Microbiology: 22:521-530. [DOI:10.1007/s10123-019-00083-3]
15. Hames-Kocabas, E.E.; Ataç, U., 2012. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples. Journal of microbiological methods, 88: 342-347. [DOI:10.1016/j.mimet.2012.01.010]
16. Helber, S.B.; Hoeijmakers, D.J.; Muhando, C.A.; Rohde, S.; Schupp, P.J., 2018. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in zanzibar. PLoS ONE, 13(6): e0197617. [DOI:10.1371/journal.pone.0197617]
17. Hentschel, U.; Usher, K.M.; Taylor, M.W., 2006. Marine sponges as microbial fermenters. FEMS microbiology ecology, 55: 167-177. [DOI:10.1111/j.1574-6941.2005.00046.x]
18. Hildebrand, M.; Waggoner, L.E.; Lim, G.E.; Sharp, K.H.; Ridley, C.P.; Haygood, M.G., 2004. Approaches to identify, clone, and express symbiont bioactive metabolite genes. Natural product reports, 21: 122-142. [DOI:10.1039/b302336m]
19. Hill, M.; Hill, A.; Lopez, N.; Harriott, O., 2006. Sponge-specific bacterial symbionts in the caribbean sponge, chondrilla nucula (demospongiae, chondrosida). Marine Biology, 148: 1221-1230. [DOI:10.1007/s00227-005-0164-5]
20. Hooper, J.N., 2000. Guide to sponge collection and identification. Queensland Meuseum: 1-138.
21. Istianto, Y.; Koesomowidodo, R.S.A.; Watanabe, Y.; Pranamuda, H.; Marwoto, B., 2012. Application of phenol pretreatment for the isolation of rare actinomycetes from indonesian soil. Microbiology Indonesia, 6: 42-47. [DOI:10.5454/mi.6.1.7]
22. Jensen, P.R.; Gontang, E.; Mafnas, C.; Mincer, T.J.; Fenical, W., 2005. Culturable marine actinomycete diversity from tropical pacific ocean sediments. Environmental microbiology, 7: 1039-1048. [DOI:10.1111/j.1462-2920.2005.00785.x]
23. Jiang, S.; Li, X.; Zhang, L.; Sun, W.; Dai, S.; Xie, L.; Liu, Y.; Lee, K.J., 2008. Culturable actinobacteria isolated from marine sponge iotrochota sp. Marine Biology, 153: 945-952. [DOI:10.1007/s00227-007-0866-y]
24. Leong, L.; Shui, G., 2002. An investigation of antioxidant capacity of fruits in singapore markets. Food chemistry, 76: 69-75. [DOI:10.1016/S0308-8146(01)00251-5]
25. Liu, R.; Deng, Z.; Liu, T., 2018. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metabolic engineering, 50: 74-84. [DOI:10.1016/j.ymben.2018.05.015]
26. Longford, S.R.; Campbell, A.H.; Nielsen, S.; Case, R.J.; Kjelleberg, S.; Steinberg, P.D., 2019. Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont. Scientific reports, 9: 1-13. [DOI:10.1038/s41598-018-37062-z]
27. Lurgi, M.; Thomas, T.; Wemheuer, B.; Webster, N.S.; Montoya, J.M., 2019. Modularity and predicted functions of the global sponge-microbiome network. Nature communications, 10: 1-12. [DOI:10.1038/s41467-019-08925-4]
28. Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.-K., 2014. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiological research, 169: 262-278. [DOI:10.1016/j.micres.2013.07.014]
29. Mehbub, M.F.; Perkins, M.V.; Zhang, W.; Franco, C.M., 2016. New marine natural products from sponges (porifera) of the order dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects. Biotechnology advances, 34: 473-491. [DOI:10.1016/j.biotechadv.2015.12.008]
30. Motohashi, K.; Takagi, M.; Shin-ya, K., 2010. Tetrapeptides possessing a unique skeleton, jbir-34 and jbir-35, isolated from a sponge-derived actinomycete, streptomyces sp. Sp080513ge-23. Journal of Natural Products, 73: 226-228. [DOI:10.1021/np900810r]
31. Palaniappan, S.; Panchanathan, M.; Packiyaraj, V.; Kannan, S.; Shanmugam, S.; Subramaniam, P.; Viswanathan, M.; Shanmugam, V.; Balasubramanian, T., 2013. Antibacterial and brine shrimp lethality effect of marine actinobacterium streptomyces sp. Cas72 against human pathogenic bacteria. Asian Pacific Journal of Tropical Disease, 3: 286-293. [DOI:10.1016/S2222-1808(13)60071-7]
32. Qiu, D.; Ruan, J.; Huang, Y., 2008. Selective isolation and rapid identification of members of the genus micromonospora. Applied and environmental microbiology, 74: 5593-5597. [DOI:10.1128/AEM.00303-08]
33. Riegl, B.M.; Purkis, S.J., 2012. Coral reefs of the gulf: Adaptation to climatic extremes in the world's hottest sea. Pp. 1-4 in Coral reefs of the gulf Springer. [DOI:10.1007/978-94-007-3008-3_1]
34. Schirmer, A.; Gadkari, R.; Reeves, C.D.; Ibrahim, F.; DeLong, E.F.; Hutchinson, C.R., 2005. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge discodermia dissoluta. Applied and Environmental Microbiology, 71: 4840-4849. [DOI:10.1128/AEM.71.8.4840-4849.2005]
35. Seidel, V., 2005. Initial and bulk extraction. Natural products isolation: 27-46. [DOI:10.1385/1-59259-955-9:27]
36. Selvin, J.; Gandhimathi, R.; Kiran, G.S.; Priya, S.S.; Ravji, T.R.; Hema, T., 2009. Culturable heterotrophic bacteria from the marine sponge dendrilla nigra: Isolation and phylogenetic diversity of actinobacteria. Helgoland marine research, 63: 239-247. [DOI:10.1007/s10152-009-0153-z]
37. Solan, M.; Whiteley, N., 2016. Stressors in the marine environment: Physiological and ecological responses; societal implications. Oxford University Press. [DOI:10.1093/acprof:oso/9780198718826.001.0001]
38. Taylor, M.W.; Schupp, P.J.; Baillie, H.J.; Charlton, T.S.; De Nys, R.; Kjelleberg, S.; Steinberg, P.D., 2004. Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. Applied and Environmental Microbiology, 70: 4387-4389. [DOI:10.1128/AEM.70.7.4387-4389.2004]
39. Webster, N.S.; Wilson, K.J.; Blackall, L.L.; Hill, R.T., 2001. Phylogenetic diversity of bacteria associated with the marine sponge rhopaloeides odorabile. Applied and Environmental Microbiology, 67: 434-444. [DOI:10.1128/AEM.67.1.434-444.2001]
40. Weisz, J.B.; Lindquist, N.; Martens, C.S., 2008. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia, 155: 367-376. [DOI:10.1007/s00442-007-0910-0]
41. Zhang, H.; Lee, Y.K.; Zhang, W.; Lee, H.K., 2006. Culturable actinobacteria from the marine sponge hymeniacidon perleve: Isolation and phylogenetic diversity by 16s rrna gene-rflp analysis. Antonie Van Leeuwenhoek, 90: 159-169. [DOI:10.1007/s10482-006-9070-1]
42. Zhang, H.; Zhang, W.; Jin, Y.; Jin, M.; Yu, X., 2008. A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie Van Leeuwenhoek, 93: 241-248. [DOI:10.1007/s10482-007-9196-9]
43. Zhang, H.; Zhao, Z.; Wang, H., 2017. Cytotoxic natural products from marine sponge-derived microorganisms. Marine drugs, 15: 68. [DOI:10.3390/md15030068]
44. Zotchev, S.B., 2012. Marine actinomycetes as an emerging resource for the drug development pipelines. Journal of biotechnology, 158: 168-175. [DOI:10.1016/j.jbiotec.2011.06.002]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gozari M, tamadoni jahromi S, pourmozaffar S, Behzadi S. Selective Isolation of the Persian Gulf Sponge-associated Actinobacteria and Evaluation of Cytotoxic and Antioxidant activity of Their Metabolites. Journal of Oceanography 2020; 11 (41) :39-48
URL: http://joc.inio.ac.ir/article-1-1490-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 41 (2020) Back to browse issues page
نشریه علمی پژوهشی اقیانوس شناسی Journal of Oceanography
Persian site map - English site map - Created in 0.1 seconds with 42 queries by YEKTAWEB 4642