[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Indexing by

AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE

..
Related Links

AWT IMAGE
AWT IMAGE

..
QR Code

Orcid ID
..
:: Volume 9, Issue 35 (2018) ::
2018, 9(35): 61-69 Back to browse issues page
Potential of Red Algae Gracilaria for Biosorption of Cadmium: Isotherm, Kinetic and Response Surface Methodology Study
Mahmood Niad , Zinat Abdollahi
Persian Gulf University , maniad@pgu.ac.ir
Abstract:   (6514 Views)
The objective of the present work was to investigate the removal of cadmium by red algae Gracilaria as biomass. The effect of independent variables on biosorption of cadmium ion by the red algae Gracilaria as biomass was evaluated. The experimental data were analyzed via two custom isotherm models, i.e., Langmuir and Freundlich. The experimental design was developed for evaluating the interactions of pH, contact time, temperature, biomass dosage and initial metal concentration. The Box-Behnken model in response surface modeling was used for the optimization of the experimental data in Minitab 18 software. The five parameters were fitted into second order polynomial equation and a mathematical function was developed. Statistical significance of coefficients in the second order polynomial equation was evaluated by t-test and p-value. The optimum conditions were determined at pH of 8, initial cadmium concentration of 50 mg/L, temperature of 30 ℃, the biomass dosage of 5 mg, and of contact time of 40 minutes.  In these conditions, the calculated value (68.878 mg/g) was matched very well to the experimental value (68.256 mg/g). The modified equation can be used for the prediction of biosorption in any conditions.
Keywords: Biosorption, Red algae Gracilaria, Response surface methodology, Isotherm model
Full-Text [PDF 117 kb]   (1639 Downloads)    

Received: 2018/04/7 | Revised: 2019/02/6 | Accepted: 2018/07/25 | ePublished: 2018/12/16
References
1. Bahadir, T.; Bakan, G.; Altas, L.; Buyukgungor, H., 2007. The investigation of lead removal by biosorption: An application at storage battery industry wastewaters. Enzyme and Microbial Technology, 41(1-2): 98-102. [DOI:10.1016/j.enzmictec.2006.12.007]
2. Barka, N.; Abdennouri, M.; Boussaoud, A.; EL Makhfouk, M., 2010. Biosorption characteristics of Cadmium (II) onto Scolymus hispanicus L. as low-cost natural biosorbent. Desalination, Elsevier BV, 258(1-3): 66-71.
3. Çabuk, A.; Akar, T.; Tunali, S.; Tabak, Ö., 2006. Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb (II). Journal of Hazardous Materials, 136(2): 317-323. [DOI:10.1016/j.jhazmat.2005.12.019]
4. Chang, Y.; Wen, J.; Cai, J.; Xiao-Ying, W.; Yang, L.; Guo, Y., 2012. An investigation and pathological analysis of two fatal cases of cadmium poisoning. Forensic science international. Elsevier, 220(1-3): e5-e8.
5. Cheng, M.H.; Patterson, J.W.; Minear, R.A., 1975. Heavy metals uptake by activated sludge. Journal of the Water Pollution Control Federation, 47(2): 362-376.
6. Cossich, E.S.; Tavares, C.R.G.; Ravagnani, T.M.K., 2002. Biosorption of chromium(III) by Sargassum sp. biomass. Electronic Journal of Biotechnology, 5(2): 133-140. [DOI:10.2225/vol5-issue2-fulltext-4]
7. Donat, R.; Akdogan, A.; Erdem, E.; Cetisli, H., 2005. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science, 286(1): 43-52. [DOI:10.1016/j.jcis.2005.01.045]
8. Elibol, M., 2002. Response surface methodological approach for inclusion of perfluorocarbon in actinorhodin fermentation medium. Process Biochemistry, 38(5): 667-673. [DOI:10.1016/S0032-9592(02)00171-1]
9. Freundlich, H.M.F., 1906. Über die absorption in lösungen. Zeitschrift für Physikalische Chemie, 57: 385-470.
10. Fu, F.; Wang, Q., 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, Elsevier Ltd, 92(3): 407-418. [DOI:10.1016/j.jenvman.2010.11.011]
11. Gadd, G.M.; White, C., 1989. Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts. in: In Metal-Microbe Interactions, IRL Press, Oxford, UK. 19-38PP.
12. Ghorbani, F.; Younesi, H.; Ghasempouri, S.M.; Zinatizadeh, A.A.; Amini, M.; Daneshi, A., 2008. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chemical Engineering Journal, 145(2): 267-275. [DOI:10.1016/j.cej.2008.04.028]
13. Girardi, F.; Hackbarth, F.V.; de Souza, S.M.A.G.U.; de Souza, A.A.U.; Boaventura, R.A.R.; Vilar, V.J.P., 2014. Marine macroalgae Pelvetia canaliculata (Linnaeus) as natural cation exchanger for metal ions separation: A case study on copper and zinc ions removal. Chemical Engineering Journal, 247: 320-329. [DOI:10.1016/j.cej.2014.03.007]
14. Hashim, M.A.; Chu, K.H., 2004. Biosorption of cadmium by brown, green, and red seaweeds. Chemical Engineering Journal, 97(2-3): 249-255. [DOI:10.1016/S1385-8947(03)00216-X]
15. Keskinkan, O.; Goksu, M.Z.L.; Yuceer, A.; Basibuyuk, M.; Forster, C.F., 2003. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 39(2): 179-183. [DOI:10.1016/S0032-9592(03)00045-1]
16. Korbahti, B.K., 2007. Response surface optimization of electrochemical treatment of textile dye wastewater. Journal of Hazardous Materials, 145(1-2): 277-286. [DOI:10.1016/j.jhazmat.2006.11.031]
17. Montazer-Rahmati, M.M.; Rabbani, P.; Abdolali, A.; Keshtkar, A.R., 2011. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. Journal of Hazardous Materials, Elsevier B.V., 185(1): 401-407. [DOI:10.1016/j.jhazmat.2010.09.047]
18. Niad, M.; Rasoolzadeh, L.; Zarei, F., 2014. Biosorption of cupper (II) on Sargassum angostifolium C.Agardh Phaeophyceae biomass. Chemical Speciation and Bioavailability, 26(3): 176-183. [DOI:10.3184/095422914X14039722451529]
19. Özer, A.; Özer, D., 2003. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats, Journal of Hazardous Materials, 100(1-3): 219-229. [DOI:10.1016/S0304-3894(03)00109-2]
20. Öztürk, A., 2007. Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. Journal of Hazardous Materials, 147(1-2): 518-523. [DOI:10.1016/j.jhazmat.2007.01.047]
21. Patrón-Prado, M.; Acosta-Vargas, B.; Serviere-Zaragoza, E.; Méndez-Rodríguez, L.C., 2010. Copper and cadmium biosorption by dried seaweed Sargassum sinicola in saline wastewater. Water, Air, and Soil Pollution, 210(1-4): 197-202. [DOI:10.1007/s11270-009-0241-3]
22. Rajeshkannan, R.; Rajasimman, M.; Rajamohan, N., 2010. Removal of malachite green from aqueous Solution using Hydrilla verticillata - optimization, equilibrium and kkinetic studies. Frontiers of Chemical Engineering in China, 3(2): 222-229.
23. Reddad, Z.; Gérente, C.; Andrès, Y.; Ralet, M.C.; Thibault, J.F.; Le Cloirec, P., 2002. Ni (II) and Cu (II) binding properties of native and modified sugar beet pulp. Carbohydrate Polymers, 49: 23-31. [DOI:10.1016/S0144-8617(01)00301-0]
24. Sari, A.; Tuzen, M., 2008. Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 157(2-3): 448-454. [DOI:10.1016/j.jhazmat.2008.01.008]
25. Wagner, J., 2000. Membrane filtration handbook. Osmonics, Inc. Second Edition, Revision 2. 127P
26. Xin Sheng, P.; Ting, Y.P.; Chen, J.P.; Hong, L., 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275(1): 131-41. [DOI:10.1016/j.jcis.2004.01.036]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

niad M, Abdollahi Z. Potential of Red Algae Gracilaria for Biosorption of Cadmium: Isotherm, Kinetic and Response Surface Methodology Study . Journal of Oceanography 2018; 9 (35) :61-69
URL: http://joc.inio.ac.ir/article-1-1324-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 35 (2018) Back to browse issues page
نشریه علمی پژوهشی اقیانوس شناسی Journal of Oceanography
Persian site map - English site map - Created in 0.1 seconds with 40 queries by YEKTAWEB 4657