[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Indexing by

AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE

..
Related Links

AWT IMAGE
AWT IMAGE

..
QR Code

Orcid ID
..
:: Volume 9, Issue 35 (2018) ::
2018, 9(35): 11-20 Back to browse issues page
Effects of the Sediment Grain Size on Metabolic Reaction of Callista umbonella in Oxidative Stress Caused by Hydrocarbon Pollution in the Coast of Assaluyeh (North of the Persian Gulf)
Habib Azarmanesh , Seyed Mohammad Bagher Nabavi , Rahim Abdi , Bita Archangi
, H.azarmanesh@Hotmail.com
Abstract:   (7067 Views)
This research aimed to show different reactions of Callista umbonella in the oxidative stress caused by hydrocarbon pollution in sediments with different grain size. Regarding the differences in Porosity, Permeability and Penetrability in sandy shores, the grain size is an important factor that changes the severity of pollution caused by oxidative stress. In this research, we investigated the total length size of bivalve shell and values of antioxidant enzymes (GPx, GR, SOD and CAT) in soft tissue of C. umbonella in shores of three industrial sites (Site 1, Site 2 and site 5) and two control sites (site 3, site 4). Collected samples fixed rapidly in liquid nitrogen. The enzymes were extracted using perpendicular force and measured by spectrophotometry analysis. The values of SOD and CAT showed a positive and significant correlation (P˂ 0.05) as well as GR and GPx during the research. With average of 47.08 (±4.7) mm, Site 4 showed largest sample records in length size (±SD) but samples records on Site 1 with average length (±SD), 37.72 (±3.9) mm were in minimum scale. The results showed that metabolic reaction of C. umbonella, for controlling the oxidative stress of being exposed to the pollution in sediments with higher porosity was decreasing the metabolism, while the reaction in sediment with higher permeability was vice versa. Finally, according to the results, C. umbonella showed better growth in clean sediments with the high porosity.
Keywords: Grain size, Sandy shores, Oxidative stress, C. umbonella, Hydrocarbon pollution, Persian Gulf
Full-Text [PDF 113 kb]   (1954 Downloads)    
Type of Study: Research/ Original/ Regular Article | Subject: Marine Biology
Received: 2018/04/24 | Revised: 2019/02/6 | Accepted: 2018/06/24 | ePublished: 2018/12/15
References
1. Abale, D.; Puntarulo, S., 2004. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comparative Biochemistry, 42(4): 405-415. [DOI:10.1016/j.cbpb.2004.05.013]
2. Abele, D.; Vazquez, M.; Jos, E.; Zenteno, T.; Savın, T., 2012. Oxidative Stress in aquatic ecosystem. The Atrium, First Edition: Blackwell Publishing Ltd, 320-341PP.
3. Aljbour, S.; Al-Horani, F.; Kunzmanna, A., 2018. Metabolic and oxidative stress responses of the jellyfish Cassiopea to pollution in the Gulf of Aqaba, Jordan. Marine Pollution Bulletin, 152(3): 271-278. [DOI:10.1016/j.marpolbul.2018.03.044]
4. Alofısio Torres, M.; Testa, C.P.; Gaspari, C.; Masutti, M.B.; Neves Panitz, C.M.; Curi-Pedrosa, R.; Wilhelm Filho, D., 2002. Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Marine Pollution Bulletin, 171(4): 923-932. [DOI:10.1016/S0025-326X(02)00142-X]
5. Alves de Almeida, E.; Celso Dias Bainy, A.; Paula de Melo Loureiro, A.; Regina Martinez, G.; Miyamoto, S., 2007. Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage. Comparative Biochemistry and Physiology, 26(8): 588-600. [DOI:10.1016/j.cbpa.2006.02.040]
6. Amira, A.; Merad, I.; Almeida, M.; Guimara, L.; Soltani, N., 2018. Seasonal variation in biomarker responses of Donax trunculus from the Gulf of Annaba (Algeria): Implication of metal accumulation in sediments. Comptes Rendus Geoscience, 31(5): 173-179. [DOI:10.1016/j.crte.2018.02.002]
7. Anestis, A.; Lazou, A.; P¨ortner, H.; Michaelidis, B., 2007. Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long term acclimation at increasing ambient temperature. American Journal of Physiology, 42: 911-921.
8. Bakus, G., 2007. Types of data, standardizations and transformations, introduction to biometrics, experimental design. In quantitative analysis of marine biological communities: Field biology and environment, New Jersey: John Wiely and Sons, 64-80PP. [DOI:10.1002/9780470099186.ch2]
9. Bergmeyer, H., 1965. Methods of enzymatic analysis. New York: Academic Press, 261-280PP.
10. Blier, P.U.; Abele, D.; Munroa, D.; Degletagne, C.; Rodrigueza, E., 2017. What modulates animal longevity? Fast and slow aging in bivalves as a model for the study of lifespan. Seminars in Cell and Developmental Biology, 51(6): 130-140. [DOI:10.1016/j.semcdb.2017.07.046]
11. Buchanan, J.B.; Longbottom, M.R., 1970. The determination of organic matter in marine muds: the effect of the presence of coal and the routine determination of protein. Journal of Experimental Marine Biology and Ecology, 158-169. [DOI:10.1016/0022-0981(70)90014-6]
12. Carella, F.; Feist, S.; Bignell, J.; De Vico, G., 2015. Comparative pathology in bivalves: Aetiological agents and disease processes. Journal of Invertebrate Pathology, 81(9): 107-120. [DOI:10.1016/j.jip.2015.07.012]
13. Dutta, S.; Mustafi, S.; Raha, S.; Chakraborty, S., 2018. Biomonitoring role of some cellular markers during heat stress-induced changes in highly representative fresh water mollusc, Bellamya bengalensis: Implication in climate change and biological adaptation. Ecotoxicology and Environmental Safety, 41(6): 482-490. [DOI:10.1016/j.ecoenv.2018.04.001]
14. Eleftheriou, A.; McIntyre, A., 2005. Methods for the study of marine benthos. Oxford, UK: Blackwell Publishing Company, 410-470PP. [DOI:10.1002/9780470995129]
15. Fernandez, C.; San Miguel, E.; Fernandez-Briera, A., 2009. Superoxide dismutase and catalase: tissue activities and relation with age in the long-lived species Margaritifera margaritifera, 42(3): 651-660.
16. Francesco, R.; Raffaella, B.; Danilo, W., 2012. Spectrophotometric assay of antioxidant. In: Oxydative stress in aquatic ecosystems. Oxford: Wiley Black Well, 381-385PP. First Edition, Wiley Black Well.
17. Hamzavi, S.F.; Kamrani, E.; Salarzadeh, A.; Salarpouri, A., 2012. The study of seasonal changes of intertidal macrobenthoses in mangrove forests of Basatin estuary of Nay band Gulf. Journal of Applied Environmental and Biological Sciences, 348-357pp.
18. Hiebenthal, C.; Philipp, E.E.; Eisenhauer, A.; Wahl, M., 2012. Interactive effects of temperature and salinity on Interactive effects of temperature and salinity on Mytilus edulis and Arctica islandica. Aquatic Biology, 289-298. [DOI:10.3354/ab00405]
19. Huanga, X.; Liua, Z.; Xiea, Z.; Dupontg, S.; Huangd, W.W.; Konga, H.; Wanga, Y., 2018. Oxidative stress induced by titanium dioxide nanoparticles increases under seawater acidification in the thick shell mussel Mytilus coruscus. Marine Environmental Research, 156(4): 49-59. [DOI:10.1016/j.marenvres.2018.02.029]
20. Kim, Y.D.; Kim, W.J.; Shin, Y.K.; Lee, D.H.; Kim, Y.J.; Kim, J.K.; Rhee, J.S., 2017. Microcystin-LR bioconcentration induces antioxidant responses in the digestive gland of two marine bivalves Crassostrea gigas and Mytilus edulis. Aquatic Toxicology, 141(4):119-129. [DOI:10.1016/j.aquatox.2017.05.003]
21. Lacey, L.A., 2012. Manual of techniques in invertebrate pathology. Washington: Academic Press. 120-160 PP.
22. Libralato, G.; Minetto, D.; Lofrano, G.; Guida, M.; Carotenuto, M.; Aliberti, F.; Conte, B.; Notarnicola, M., 2018. Toxicity assessment within the application of in situ contaminated sediment remediation technologies: A review. Science of the Total Environment, 621(5): 85-94. [DOI:10.1016/j.scitotenv.2017.11.229]
23. Mannervik, B.; Carlberg, I.; Larson, K., 1989. Glutathione, general review of mechanisms of action. New York: Wiley Blackwell, 161-210PP.
24. Matozzo, V.; Fabrello, J.; Masiero, L.; Ferraccioli, F.; Finos, L.P.; Gangi, L.; Bogialli, S., 2018. Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: A case study with the mussel Mytilus galloprovincialis. Environmental Pollution, 541(5): 623-632. [DOI:10.1016/j.envpol.2017.10.100]
25. McLachlan, A.; Defeo, O., 2017a. Adaptations to sandy beach life. In: The ecology of sandy shores, Third edition. Cambridge: Academic Press, 103-107PP.
26. McLachlan, A.; Defeo, O., 2017b. Sandy-beach invertebrates. In: The ecology of sandy shores, Third edition. Cambridge: Academic Press, 75-90PP.
27. Nabavi, S.M.; Ghotbeddin, N.; Kochanian, P.; Dehghan, M.S., 2007. Population growth of the venerid bivalve Circentia callipyga in the Hendijan coast, Persian Gulf. Pakistan Journal of Biological Science, 1121(5): 125-148.
28. Nasermoaddeli, M.; Lemmen, C.; Stigge, G.; Kerimoglu, O.; Burchard, H.; Klingbeil, K.; Kösters, F., 2017. A model study on the large-scale effect of macrofauna on the suspended sediment concentration in a shallow shelf sea. Estuarine, Coastal and Shelf Science, 560(6): 32-31.
29. Niamaimandi, N., 2013. Growth, mortality and stock abundance of venerid bivalve, paphiacor from iranian coastal waters of Bushehr, Persian Gulf. Environmental Studies of Persian Gulf, 321(4): 51-58.
30. Rius, A.; Denis, D.; Dauvin, J.; Spilmont, N., 2018. Macrobenthic diversity and sediment-water exchanges of oxygen and ammonium: Example of two subtidal communities of the eastern english channel. Journal of Sea Research, 220(3): 15-27. [DOI:10.1016/j.seares.2018.02.007]
31. Rufino, M.; Baptista, P.; Pereira, F.; Gaspar, F., 2018. Semi-automatic surface sediment sampling system – A prototype to be implemented in bivalve fishing surveys. Continental Shelf Research, 151(4): 71-75. [DOI:10.1016/j.csr.2017.11.004]
32. Saeedi, H.; Ardalan, A.A.; Kamrani, E.; Kiabi, B.H., 2010. Reproduction, growth and production of Amiantis umbonella (Bivalvia: Veneridae) on northern coast of the Persian Gulf, Bandar Abbas, Iran. Journal of the Marine Biological Association of the United Kingdom, 329(5): 711-718. [DOI:10.1017/S0025315409991056]
33. Vlahogianni, T.; Dassenakis, M.; Scoullos, M.; Valavanidis, A., 2007. Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussel Mytilus galloprovincialis for assessing heavy metals' pollution in coastal areas from the Saronikos Gulf of Greece. Marine Pollution Bulletin, 341(6): 1361-1371. [DOI:10.1016/j.marpolbul.2007.05.018]
34. Zonta, R.; Botter, M.; Cassin, M.; Bellucci, L.; Pini, R.; Dominik, J., 2018. Sediment texture and metal contamination in the Venice Lagoon (Italy): A snapshot before the installation of the MOSE system. Estuarine, Coastal and Shelf Science, 352(5): 131-151. [DOI:10.1016/j.ecss.2018.03.007]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azarmanesh H, Nabavi S M B, Abdi R, Archangi B. Effects of the Sediment Grain Size on Metabolic Reaction of Callista umbonella in Oxidative Stress Caused by Hydrocarbon Pollution in the Coast of Assaluyeh (North of the Persian Gulf) . Journal of Oceanography 2018; 9 (35) :11-20
URL: http://joc.inio.ac.ir/article-1-1235-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 35 (2018) Back to browse issues page
نشریه علمی پژوهشی اقیانوس شناسی Journal of Oceanography
Persian site map - English site map - Created in 0.1 seconds with 42 queries by YEKTAWEB 4657