[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Indexing by

AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE
AWT IMAGE

..
Related Links

AWT IMAGE
AWT IMAGE

..
QR Code

Orcid ID
..
:: Volume 14, Issue 54 (2023) ::
2023, 14(54): 1-12 Back to browse issues page
Investigation of the effect of environmental factors on chlorophyll a, c, and total carotenoids in Symbiodinium Sp. symbiosis with sea anemone Stichodactyla haddoni
Sarvenaz Bigham Soostani , Tarbiat Modares University Zareidarki , Morteza Yousefzadi , Mohammad Sharif Rangbar
Tarbiat Modares University , zareidarki@modares.ac.ir
Abstract:   (1663 Views)
Background and Objectives: Coral reefs in environments with unique environmental circumstances show how corals might adapt to future stressors and possible climate change. The Persian Gulf and the Gulf of Oman are environmentally unique places with little information on the inherent diversity of key environmental variables (such as temperature, chlorophyll a, and carotenoids) that affect soft corals, or how this diversity leads to allergies and death due to environmental factors, no. The research presented here addresses this knowledge gap and examines sea level temperature, pH, DO and salinity factors, chlorophyll a, and carotenoids to reveal differences between the Persian Gulf and the Gulf of Oman.
Methods: Environmental factors were measured by an HQ40D portable multimeter with the ability to record some environmental parameters. A sampling of Stichodactyla haddoni anemone was performed in two seasons of summer and winter from three stations including: Qeshm Island, Dukohak Station, Hormoz Island, Khezr Station, and Chabahar Bay, Tis Station.
Findings: Due to the normal range of pH, DO and salinity factors, they did not show a statistically significant correlation with any of the evaluated parameters (P <0.05). The highest amount of chlorophyll a and total carotenoids was observed in the colored sample of sea anemone (brown) of Chabahar. The lowest amount of chlorophyll a and carotenoids belonged to the summer sample of Qeshm. Chlorophyll c levels in the samples did not differ significantly by station or season. Thermal map of physicochemical relationships with Symbiodinium sp. pigments in summer showed that the highest correlation of pigments related to dissolved oxygen percentage, temperature, and salinity, and in winter thermal map showed that salinity, dissolved oxygen percentage, and temperature had the greatest effect on pigments, especially It had chlorophyll a and carotenoids.
Conclusion: The Results' section of the study of zooxanthella pigments in symbiosis with sea anemones showed an increase in pigments between study stations both in summer and winter. Monsoon winds, which change water temperatures, maybe to responsible for the increase of symbiotic dinoflagellate pigment in Chabahar Bay station throughout the summer. The obtained results indicate that chlorophyll c is resistant to environmental and season conditions.
Keywords: Pigments, sea anemones, environmental factors, symbiosis, dinoflagellate
Full-Text [PDF 1633 kb]   (401 Downloads)    
Type of Study: Research/ Original/ Regular Article | Subject: Marine Biology
Received: 2022/02/4 | Revised: 2023/11/20 | Accepted: 2023/09/6 | ePublished: 2023/11/18
References
1. Adey WH. Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. Journal of Phycology. 1998 Jun;34(3):393-406. https://10.1046/j.1529-8817.1998.340393.x [DOI:10.1046/j.1529-8817.1998.340393.x]
2. Adjeroud M, Poisson E, Peignon C, Penin L, Kayal M. Spatial patterns and short-term changes of coral assemblages along a cross-shelf gradient in the Southwestern Lagoon of New Caledonia. Diversity. 2019 Feb;11(2):21. [DOI:10.3390/d11020021]
3. Anthony KR, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences. 2008 Nov 11;105(45):17442-6. [DOI:10.1016/j.rsma.2018.06.009]
4. Berkelmans R, Van Oppen MJ. The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope'for coral reefs in an era of climate change. Proceedings of the Royal Society B: Biological Sciences. 2006 Sep 22;273(1599):2305-12. [DOI:10.1098/rspb.2006.3567] [PMID] []
5. Buddemeier RW, Kinzie RA. Coral growth. Oceanogr Mar Biol Annu Rev. 1976; 14:183-225.
6. Burt JA, Paparella F, Al-Mansoori N, Al-Mansoori A, Al-Jailani H. Causes and consequences of the 2017 coral bleaching event in the southern Persian/Persian Gulf. Coral Reefs. 2019 Aug;38(4):567-89. [DOI:10.1007/s00338-019-01767-y]
7. Coles SL, Jokiel PL. Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Marine Biology. 1978 Sep;49(3):187-95. [DOI:10.1007/BF00391130]
8. Connan S. Spectrophotometric assays of major compounds extracted from algae. InNatural Products From Marine Algae 2015 (pp. 75-101). Humana Press, New York, NY. [DOI:10.1007/978-1-4939-2684-8_3] [PMID]
9. D'angelo C, Hume BC, Burt J, Smith EG, Achterberg EP, Wiedenmann J. Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. The ISME journal. 2015 Dec;9(12):2551-60. [DOI:10.1038/ismej.2015.80] [PMID] []
10. Dove S, Ortiz JC, Enríquez S, Fine M, Fisher P, Iglesias-Prieto R, Thornhill D, Hoegh-Guldberg O. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short‐term heat stress. Limnology and Oceanography. 2006 Mar;51(2):1149-58. [DOI:10.4319/lo.2006.51.2.1149]
11. Fagoonee I, Wilson HB, Hassell MP, Turner JR. The dynamics of zooxanthellae populations: a long-term study in the field. Science. 1999 Feb 5;283(5403):843-5. [DOI:10.1126/science.283.5403.843] [PMID]
12. Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L. Population control in symbiotic corals. Bioscience. 1993 Oct 1;43(9):606-11. [ [DOI:10.2307/1312147]
13. Franklin DJ, Hoegh-Guldberg O, Jones RJ, Berges JA. Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Marine Ecology Progress Series. 2004 May 19; 272:117-30. [DOI:10.3354/meps272117]
14. Halabian A, Kabiri K, Safarnejad M, Shirani M. Effect of sea surface temperature (SST) changes on coral ecosystems in Kish Island. Journal of Oceanography. 2022 Jul 15;13(50):49-64.(Persian)http://joc.inio.ac.ir/article-1-1622-fa.html
15. Howells EJ, Abrego D, Meyer E, Kirk NL, Burt JA. Host adaptation and unexpected symbiont partners enable reef‐building corals to tolerate extreme temperatures. Global change biology. 2016 Aug;22(8):2702-14. [DOI:10.1111/gcb.13250] [PMID]
16. Hugues TP, Baird H, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JB, Kleypas J, Lough JM. Climate change, human impacts, and the resilience of coral reefs. Science. 2003. [DOI:10.1126/science.1085046] [PMID]
17. Hume BC, D'Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf. Scientific reports. 2015 Feb 27;5(1):1-8. [DOI:10.1038/srep08562] [PMID] []
18. Kanazawa A, Blanchard GJ, Szabó M, Ralph PJ, Kramer DM. The site of regulation of light capture in Symbiodinium: Does the peridinin-chlorophyll a-protein detach to regulate light capture?. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 2014 Aug 1;1837(8):1227-34. [DOI:10.1016/j.bbabio.2014.03.019] [PMID]
19. Kor, K. Ghaziloo, A. Erdeshifar, H. Koochaknejad, A. Baskeleh, G. Changes in physicochemical, nutrient and chlorophyll a metasyms in Makran coastal waters. Journal of Oceanography.2019 10 (39): 124-113. (Persian) http://joc.inio.ac.ir/article-1-1545-fa.html
20. Leggat W, Seneca F, Wasmund K, Ukani L, Yellowlees D, Ainsworth TD. Differential responses of the coral host and their algal symbiont to thermal stress. PloS one. 2011 Oct 24;6(10): e26687. [DOI:10.1371/journal.pone.0026687] [PMID] []
21. Marsh GE. Seawater pH and anthropogenic carbon dioxide. arXiv preprint arXiv:0810.3596. 2008 Oct 20.
22. Martı́nez D, Morera V, Alvarez C, Tejuca M, Pazos F, Garcı́a Y, Raida M, Padrón G, Lanio ME. Identity between cytolysins purified from two morphos of the Caribbean Sea anemone Stichodactyla helianthus. Toxicon. 2002 Aug 1;40(8):1219-21. [DOI:10.1016/S0041-0101(02)00101-0] [PMID]
23. Muscatine L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral reefs. 1990;25(1.29):75-87. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19736339
24. Nybakken JW. Marine biology: an ecological approach. San Francisco: Benjamin Cummings; 2001.ISBN-13: 978-0060448493
25. Paparella F, Xu C, Vaughan GO, Burt JA. Coral bleaching in the Persian/Arabian Gulf is modulated by summer winds. Frontiers in Marine Science. 2019 Apr 24; 6:205. [DOI:10.3389/fmars.2019.00205]
26. Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A. Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society; 2005. pp.1-51
27. Raven JA, Gobler CJ, Hansen PJ. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms. Harmful Algae. 2020 Jan 1; 91:101594. [DOI:10.1016/j.hal.2019.03.012] [PMID]
28. Riegl BM, Purkis SJ, Al-Cibahy AS, Abdel-Moati MA, Hoegh-Guldberg O. Present limits to heat-adaptability in corals and population-level responses to climate extremes. PloS one. 2011 Sep 20;6(9): e24802. [DOI:10.1371/journal.pone.0024802] [PMID] []
29. Rinkevich B. The contribution of photosynthetic products to coral reproduction. Marine Biology. 1989 Apr;101(2):259-63. [DOI:10.1007/BF00391465]
30. Rosenberg E, Ben‐Haim Y. Microbial diseases of corals and global warming. Environmental microbiology. 2002 Jun;4(6):318-26. [DOI:10.1046/j.1462-2920.2002.00302.x] [PMID]
31. Rowan R. Thermal adaptation in reef coral symbionts. Nature. 2004 Aug;430(7001):742-. [DOI:10.1038/430742a] [PMID]
32. Rowan R, Knowlton N, Baker A, Jara J. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature. 1997 Jul;388(6639):265-9. https://doi.org/10.1038/40755 [DOI:10.1038/40755.] [PMID]
33. Scheufen T, Iglesias-Prieto R, Enríquez S. Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Frontiers in Marine Science. 2017 Sep 26;4:309. [DOI:10.3389/fmars.2017.00309]
34. Smith JJ, Blumenthal KM. Site-3 sea anemone toxins: molecular probes of gating mechanisms in voltage-dependent sodium channels. Toxicon. 2007 Feb 1;49(2):159-70. [DOI:10.1016/j.toxicon.2006.09.020] [PMID]
35. Szmant A, Gassman NJ. The effects of prolonged "bleaching" on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral reefs. 1990 Apr;8(4):217-24. https://doi.org/10.2144/03342mt01 [DOI:10.2144/03342mt01.] [PMID]
36. Tchernov D, Gorbunov MY, De Vargas C, Yadav SN, Milligan AJ, Häggblom M, Falkowski PG. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proceedings of the National Academy of Sciences. 2004 Sep 14;101(37):13531-5. [DOI:10.1073/pnas.0402907101] [PMID] []
37. Turley CM, Brownlee C, Findlay HS, Mangi SC, Ridgwell AJ, Schmidt DN, Schroeder DC. Ocean Acidification in MCCIP Annual Report Card 2010-11. MCCIP. 2010: Jan-27. http://plymsea.ac.uk/id/eprint/5009
38. Ulstrup KE, Berkelmans R, Ralph PJ, Van Oppen MJ. Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Marine Ecology Progress Series. 2006 May 22; 314:135-48. [DOI:10.3354/meps314135]
39. Van Veghel M U, Bak RPM. Reproductive characteristics of the polymorphic Caribbean reef building coral Adontastrea annulans 3. Reproduction in damaged and regenerating colonies. Mar Ecol Prog Ser. 1944 109:229-233. https://www.jstor.org/stable/24846187 [DOI:10.3354/meps109229]
40. Venn AA, Wilson MA, trapido‐rosenthal HG, Keely BJ, Douglas AE. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant, cell & environment. 2006 Dec;29(12):2133-42. [DOI:10.1111/j.1365-3040.2006.001587.x] [PMID]
41. Zamani MP, Soedharma D, Madduppa H, Muhaemin M. The intracellular photopigment and glutathione (GSH) dynamics in symbiodinium natural population during light stress and recovery. InIOP Conference Series: Earth and Environmental Science 2019 Sep 1 (Vol. 325, No. 1, p. 012015). IOP Publishing. https://doi.org10.1088/1755-1315/325/1/012015 [DOI:10.1088/1755-1315/325/1/012015]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bigham Soostani S, zareidarki T M U, Yousefzadi M, Rangbar M S. Investigation of the effect of environmental factors on chlorophyll a, c, and total carotenoids in Symbiodinium Sp. symbiosis with sea anemone Stichodactyla haddoni. Journal of Oceanography 2023; 14 (54) :1-12
URL: http://joc.inio.ac.ir/article-1-1702-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 54 (2023) Back to browse issues page
نشریه علمی پژوهشی اقیانوس شناسی Journal of Oceanography
Persian site map - English site map - Created in 0.09 seconds with 42 queries by YEKTAWEB 4657