[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 11, Issue 43 (2020) ::
joc 2020, 11(43): 80-0 Back to browse issues page
Tsunami warning system using of IoT
Maryam Parsi , Mahmood Reza Akbarpour Jannat
INIOAS , m.parsi@inio.ac.ir
Abstract:   (362 Views)
Today, the world has reached a new nature with advances in science. The Internet of Things is a technology that can connect all objects in different fields through the Internet. Some unforeseen event that destroys economic, social and physical capabilities and inflicts human and financial losses is known as a natural disaster, such as a tsunami. IoT-based tsunami forecasting system is an IoT smart device that acts as a tsunami alert and monitoring system and has the ability to communicate via the Internet. Therefore, it is necessary to conduct studies and research in the field of tsunami management with the approach of minimizing financial and human losses. In this study, first the tsunami is described and some IoT applications for tsunami detection are introduced, then the challenges of IoT-based algorithms used for the tsunami warning system are pointed out. It is hoped that tsunamis will be predicted early in the not-too-distant future and that tsunami detection, crisis management will be reduced using the Internet of Things.
Keywords: Internet of Things (IoT), Tsunami, Wireless Sensor Networks, Early warning system. Time series
Type of Study: مروری | Subject: Marine Technology
Received: 2020/09/22 | Accepted: 2020/12/8 | ePublished: 2020/12/22
1. Casey, Kenan., Lim, Alvin & Dozier, Gerry. "A sensor network architecture for Tsunami detection and response". International Journal of Distributed Sensor Networks. Vol: 4, 2008. DOI: 10.1080/15501320701774675
2. Alhamidi., Pakpahan, V. H., Simanjuntak, J E S. "Analysis of tsunami disaster resilience in Bandar Lampung bay coastal zone". IOP Conference Series: Earth and Environmental Science. 158. 012037, 2018. DOI: 10.1088/1755-1315/158/1/012037
3. Reghunath Lekshmi & Saranya Ms. "Early Warning System to Predict Tsunami Based on IoT". International Journal of Research, Volume 05 Issue 07, pp. 419-425, 2017.
4. Dubois, J.P., S.Daba, J., Karam, H., Abdallah, J. "An enhanced SAR-Based Tsunami detection system". World Academy of Science, Engineering and Technology International Journal of Electronics and Communication Engineering, Vol: 8, No: 7, pp. 1242-1246, 2014.
5. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. "Internet of things: A survey on enabling technologies, protocols, and applications". IEEE Communications Surveys & Tutorials, 17, (4), pp. 2347-2376, 2015. DOI: 10.1109/COMST.2015.2444095
6. R Nimbargi, Saket, Hadawale, Samarth & Ghodke, Gaurav. "Tsunami alert & detection system using IoT: A survey". International Conference on Big Data, IoT and Data Science (BID) Vishwakarma Institute of Technology, pp. 182-184, 2017. DOI: 10.1109/BID.2017.8336595
7. Cartwright, Julyan & Nakamura, Hisami. "Tsunami: A history of the term and of scientific understanding of the phenomenon in Japanese and Western culture". Notes and records of the Royal Society of London. 62. pp.151-66, 2008. DOI: 10.1098/rsnr.2007.0038
8. Yu K. "Weak Tsunami Detection Using GNSS-R-Based Sea Surface Height Measurement". IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1363-1375, 2016. DOI: 10.1109/TGRS.2015.2478776
9. Katsumoto, Toru., Takaoka, Katsumi., Takanohashi, Kazukuni., Youssef, M. "GNSS System Design and Evaluation for IoT Applications". Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, Oregon, pp. 3566-3572, 2017. DOI: 10.33012/2017.15386
10. C.Manju, S.Banumathi, M.E. "IoT on disaster information analysis using wireless sensor network". International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST) Vol.3, Special Issue.24, pp. 281-286, 2017.
11. Perwej, Dr. Yusuf & Aboughaly, Mahmoud & Kerim, Bedine & Harb, Hani. "An extended review on Internet of Things (IoT) and Its promising applications". Vol.7, pp. 8-22, 2019. DOI: 10.5120/cae2019652812
12. Yan, Qingyun & Huang, Weimin. "Tsunami detection and parameter estimation from GNSS-R Delay-Doppler map". IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 9. Pp. 4650- 4659, 2016. DOI: 10.1109/JSTARS.2016.2524990
13. Xu J, Yao J, Wang L, Ming Z, Wu K. & Chen L. "Narrowband internet of things: evolutions, technologies and open issues". IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1449-1462, 2018. DOI: 10.1109/JIOT.2017.2783374
14. Tubaishat, Abdallah & Paliath, Suhail. "Adoption Challenges of the Internet of Things: A Survey". pp. 332-338, 2018. DOI: 10.1109/CCOMS.2018.8463303.
15. Borgia E. "The internet of things vision: Key features, applications and open issues". Computer Communications, vol. 54, pp. 1-31, 2014. DOI: 10.1016/j.comcom.2014.09.008
16. Amjath Ali J., Thangalakshmi B., A. Beaulah Vincy. "IoT based disaster detection and early warning device". International Journal of MC Square Scientific Research Vol. 9, No. 3, pp. 20-25, 2017. DOI: 10.20894/IJMSR.
17. Deepali Virmani, Nikita Jain. "Intelligent information retrieval for Tsunami detection using wireless sensor nodes". International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2016. DOI: 10.1109/ICACCI.2016.7732192
18. Yamamoto, N., Aoi, Sh., Hirata, K., Suzuki, W., Kunugi, T. and Nakamura, H. "Multi-index method using offshore ocean-bottom pressure data for real-time tsunami forecast". Yamamoto et al. Earth, Planets and Space (2016), pp. 68:128, 2016. DOI: 10.1186/s40623-016-0500-7
19. Kharde Sagar.D. & Kumar Chanaky. "Natural disasters alert system using wireless sensor network". IJEDR, Volume 3, Issue 4, ISSN: 2321-9939, 2015.
20. Ary Murti, Muhammad. "Sensor system design for Tsunami early warning system". 2nd Symposium of Future Telecommunication and Technologies (SOFTT), pp. 1-2, 2018.
21. Schindelé F, Gailler A, Hébert H, Loevenbruck A, Gutierrez E Monnier, Roudil, A P, Reymond D. and Rivera L. "Implementation and challenges of the Tsunami warning system in the Western Mediterranean". Pure and Applied Geophysics, s. 172, pp. 821–833, 2015. DOI: 10.1007/s00024-014-0950-4
22. National Oceanic and Atmospheric Administration, U.S. "Detecting Japan Tsunami Marine Debris at Sea: A Synthesis of Efforts and Lessons Learned". Japan Tsunami Marine Debris Detection Report, pp. 1-41, 2015.
23. Whitehead, Ken & Hugenholtz, Chris. "Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges". Journal of Unmanned Vehicle Systems. 02. pp. 69-85, 2014. DOI: 10.1139/juvs-2014-0006
24. Braun, Andrew. "How the Internet of Things can help manage natural disasters". IoT Technologies Trends, Posted on September 19, 2019.
25. Akbarpour Jannat, Mahmood Reza & Rastgoftar, Ehsan. "Numerical Study of the Nonlinear Parameters Effects on the Tsunami wave Modeling at Chabahar Bay". Iranian National Institute for Oceanography and Atmospheric Science, Project Report, Winter 2018.
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parsi M, Akbarpour Jannat M R. Tsunami warning system using of IoT. joc. 2020; 11 (43) :80-0
URL: http://joc.inio.ac.ir/article-1-1586-en.html

Volume 11, Issue 43 (2020) Back to browse issues page
نشریه علمی پژوهشی اقیانوس شناسی Journal of Oceanography
Persian site map - English site map - Created in 0.09 seconds with 30 queries by YEKTAWEB 4247