[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 10، شماره 40 - ( 1398 ) ::
جلد 10 شماره 40 صفحات 55-63 برگشت به فهرست نسخه ها
پیش‌بینی پتانسیل توزیع گونه حرا ((Avicennia marina در محدوده جنگل ‌های مانگرو جنوب ایران با استفاده از متغیرهای زیست شیمیایی
راضیه قیومی، الهام ابراهیمی
گروه پژوهشی تنوع زیستی و ایمنی زیستی، پژوهشکده محیط زیست و توسعه پایدار، سازمان حفاظت محیط‌ زیست، تهران ، r.ghayoumi@gmail.com
چکیده:   (1152 مشاهده)
چکیده
جنگل­های حرا جز اکوسیستم­هایی هستند که توزیع و ترجیحات اکولوژیکی آن­ها اغلب مورد بررسی قرار نگرفته است و مدل­سازی توزیع گونه­ای برای این جنگل­ها می­تواند سبب بهبود و ارتقاء سطح مدیریت و حفاظت آن­ها شود. این مطالعه در سال 1396 و با هدف معرفی پتانسیل رویشگاه مطلوب گونه Avicennia marina و مهمترین عوامل موثر بر پراکنش آن انجام گردید. در این مطالعه ابتدا لایه­های 9 متغیر زیست­شیمیایی از پایگاه داده Bio-Oracle استخراج گردید و همبستگی بین متغیرهای زیست­شیمیایی برای گونه­ مورد تجزیه و تحلیل قرار گرفت و سپس متغیرهای دارای همبستگی بالا از فرآیند مدل­سازی حذف شد. درنهایت مدل­سازی توزیع گونه­ای جنگل­های حرا با روش بیشینه آنتروپی در نرمافزار MaxEnt انجام شد. نتایج نشان داد عموماً مناسب­ترین مناطق برای پراکنش جنگل­های حرا در ایران، حاشیه­ی شرقی خلیج فارس و اغلب مناطق حاشیهای دریای عمان هستند. در این مدلسازی متغیرهای حداقل کلروفیل، میانگین کلروفیل، مجموع حداکثر کلروفیل و  pHبه ترتیب بهعنوان مهم­ترین پارامتر­های زیست­شیمیایی شناخته شده­اند. یافته­های پژوهش حاضر می­تواند برای مدیریت بهتر مناطق ذکر شده با تاکید بر حفاظت تنوع زیستی گونه حرا استفاده گردد.
واژه‌های کلیدی: جنگل‌های مانگرو، Avicennia marina، داده‌های دریایی، مدلسازی، توزیع گونه‌ ای.
متن کامل [PDF 562 kb]   (302 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: زيست­ شناسی دريا
دریافت: 1399/2/26 | پذیرش: 1399/2/26 | انتشار الکترونیک: 1399/2/26
فهرست منابع
1. Danehkar, A., 1994. Study on Sirik region mangroves. Master Thesis, Tarbiat Modarres University, Noor. (in Persian).
2. Danehkar, A., 2006. Management and development plan of Mangrove forests in Hormozgan province. First volume. Natural Resources Office of Hormozgan Province: Nature and Natural Resources Consulting Engineers. (in Persian).
3. Safyari, Sh., 2017. Mangrove Forests in Iran. Nature of Iran, (2) 2: 49-57. (in Persian).
4. Safyari, Sh. and Mansouri, M., 2008. Development of Mangrove Forests, Publications of the Forestry, Rangeland and Watershed Organization of Iran Natural Resources Office of Hormozgan Province, 498 p. (in Persian).
5. Erfani, M., Nouri, Gh., Danehkar, A., Mohajer Maravi, M. and Mahmoudi, B., 2009. Study of mangrove forests vegetation parameters in Goater Bay in southeastern Iran. Taxonomy and Biosystematics Journal, (1) 1: 33-46. (in Persian).
6. Alongi D. M., Perillo G. M. E., Wolanski E., Cahoon D. R. and Brinson M. M., 2009. Paradigm shifts in mangrove biology. Coastal Wetlands: An integrated ecosystem approach. Elsevier, Londres, Inglaterra, 615-640.
7. Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling. 157, 101-118. [DOI:10.1016/S0304-3800(02)00205-3]
8. Bosso, L., Scelza, R., Varlese, R., Meca, G., Testa, A., Rao, M. A., and Cristinzio, G., 2016. Assessing the effectiveness of Byssochlamys nivea and Scopulariopsis brumptii in pentachlorophenol removal and biological control of two Phytophthora species. Fungal biology, 120:4, 645-653.‏ [DOI:10.1016/j.funbio.2016.01.004]
9. Brandt, A. R., Heath, G. A., Kort, E. A., O'sullivan, F., Pétron, G., Jordaan, S. M and Wofsy, S., 2014. Methane leaks from North American natural gas systems. Science, 343(6172), 733-735. [DOI:10.1126/science.1247045]
10. Carrillo-Angeles, I. G., Suzán-Azpiri, H., Mandujano, M. C., Golubov, J., Martínez-Ávalos, J. G., 2016. Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). Journal of Arid Environments, 124, 310-317. [DOI:10.1016/j.jaridenv.2015.09.001]
11. Crase, B., Vesk, P., V., Liedloff, A. and Wintle, B., A., 2015. Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change. Global Change Biology 21:8, 3005-3020. [DOI:10.1111/gcb.12930]
12. Dudik, M., Philips, S. J., and Shapire, R. E., 2004. A maximum entropy approach to species distribution modelling. In Proceedings of the 21st International Conference on Machine Learning. [DOI:10.1145/1015330.1015412]
13. Faith, D.P., 1992. Conservation evaluation and phylogenetic diversity. Biol. Conserv., 61, 1-10. [DOI:10.1016/0006-3207(92)91201-3]
14. Giovannelli, J. F., Idier, J., Muller, D., and Desodt, G., 2001. Regularized adaptive long autoregressive spectral analysis. IEEE transactions on Geoscience and Remote Sensing, 39:10, 2194-2202.‏ [DOI:10.1109/36.957282]
15. Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J. and Moritz, C., 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution. 58, 1781-1793. [DOI:10.1111/j.0014-3820.2004.tb00461.x]
16. Guisan, A. and Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling. 135, 147-186. [DOI:10.1016/S0304-3800(00)00354-9]
17. Guisan, A. and Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters. 8, 993-1009. [DOI:10.1111/j.1461-0248.2005.00792.x]
18. Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis Lewis, I., Sutcliffe, P. R., Tulloch, A. I., Tracey J. Regan., Brotons, L., McDonald Madden, E., Martin, T.G., Mantyka Pringle, C., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith. J., Schwartz, M.W., Wintle, B.A., Broennimann. O., Austin. M., Ferrier. S., Kearney, M.R., H.P. Possingham., Buckley. Y. M., and Martin, T. G., 2013. Predicting species distributions for conservation decisions. Ecology letters, 16(12), 1424-1435.‏ [DOI:10.1111/ele.12189]
19. Hannah, L., Midgley, G., Andelman, S., Araújo, M., Hughes, G., Martinez-Meyer, E., Richard, P., and Williams, P., 2007. Protected area needs in a changing climate. Frontiers in Ecology and the Environment, 5(3), 131-138.‏ [DOI:10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2]
20. ITTO (the International Tropical Timber Organization)., 2012. Tropical Forest Update. Newsletter: 21(2). Last accessed on 22 July 2017 at URl: http://www.itto.int/tfu/id=2890.
21. Martínez-Meyer, E., Peterson, A.T. and Navarro-Sigüenza, A.G., 2004. Evolution of seasonal ecological niches in the Passerina buntings (Aves: Cardinalidae). Proceedings of the Royal Society of London B: Biological Sciences, 271, 1151-1157. [DOI:10.1098/rspb.2003.2564]
22. McCarty, J.P., Wolfenbarger, L. L. and Wilson, J. A., 2009. Biological Impacts of Climate Change.Encyclopedia of Life Sciences (ELS). Chichester: John Wiley and Sons, Ltd. [DOI:10.1002/9780470015902.a0020480]
23. Nitto, D. D., Neukermans, G., Koedam, N., Defever, H., Pattyn, F., Kairo, J. G., and Dahdouh-Guebas, F., 2014. Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences, 11(3), 857-871.‏ [DOI:10.5194/bg-11-857-2014]
24. Peterson, A.T., 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics. 3, 59-72. [DOI:10.17161/bi.v3i0.29]
25. Phillips, S. J. Anderson, R. P. Schapire, R. E., 2006. Maximum entropy modeling of species geographic distributions. Ecological models. 190, 231-259. [DOI:10.1016/j.ecolmodel.2005.03.026]
26. Redding, D.W and Mooers, A.O., 2006. Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20, 1670-1678. [DOI:10.1111/j.1523-1739.2006.00555.x]
27. Renner, I. W., and Warton, D. I., 2013. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69(1), 274-281.‏ [DOI:10.1111/j.1541-0420.2012.01824.x]
28. Robinson, L. M., Elith, J., Hobday, A. J., Pearson, R. G., Kendall, B. E., Possingham, H. P., and Richardson, A. J., 2011. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography, 20(6), 789-802.‏ [DOI:10.1111/j.1466-8238.2010.00636.x]
29. Royle, J. A., Chandler, R. B., Yackulic, C., & Nichols, J. D., 2012. Likelihood analysis of species occurrence probability from presence only data for modelling species distributions. Methods in Ecology and Evolution, 3 (3), 545-554. [DOI:10.1111/j.2041-210X.2011.00182.x]
30. Shahparian M, Fakheran S, Moradi H, Hemami M, Shafiezadeh M. Modeling Habitat Suitability of the Dolphins Using MaxEnt in Makran Sea, South of Iran. joc.2017; 7 (28):47-56. (in Persian). [DOI:10.18869/acadpub.joc.7.28.47]
31. Singh, H. S., 2003. Vulnerability and adaptability of Tidal forests in response to climate change in India.Indian forester, Indian for, 129(6): 749-756.
32. Smeraldo, S., Di Febbraro, M., Cirovic, D., Bosso, L., Trbojevic, I. and Russo, D., 2017. Species distribution models as a tool to predict range expansion after reintroduction: A case study on Eurasian beavers (Castor fiber). Journal for nature conservation, 37, 12-20.‏ [DOI:10.1016/j.jnc.2017.02.008]
33. Spalding, M. D., F. Blasco and C. Field., 1997. World Mangrove Atlas. Okinava, Japan: The international Society for Mangrove ecosystem. 178 pp.
34. Spalding, M., Kainuma, M., and Collins, L. 2010., World atlas of mangroves. A collaborative project of ITTO, ISME, FAO, UNEP-WCMC. London, UK: Earthscan, 319 pp.
35. Spalding M, McIvor A, Tonneijck FH, Tol S and van Eijk P., 2014. Mangroves for coastal defence. Guidelines for coastal managers and policy makers. Published by Wetlands International and The Nature Conservancy. 42 pp.
36. Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley,B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Townsend Peterson, A.T., Phillips, O.L. and Williams, S.E., 2004. Extinction risk from climate change. Nature. 427, 145-148. [DOI:10.1038/nature02121]
37. Thuiller, W., Richardson, D.M., Pysek, P., Midgley, G.F., Hughes, G.O. and Rouget, M., 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11, 2234-2250. [DOI:10.1111/j.1365-2486.2005.001018.x]
38. Vane-Wright, R. I., Humphries, C. J., and Williams, P. H., 1991. What to protect? -Systematics and the agony of choice. Biological conservation, 55:3, 235-254.‏ [DOI:10.1016/0006-3207(91)90030-D]
39. Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., and Veran, S. 2013., Presence only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution, 4:3, 236-243. [DOI:10.1111/2041-210x.12004]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghayoumi R, Ebrahimi E. Predicting the potential distribution of Avicennia marina across mangrove forest area in Southern Iran using Biochemical datase. joc. 2019; 10 (40) :55-63
URL: http://joc.inio.ac.ir/article-1-1530-fa.html

قیومی راضیه، ابراهیمی الهام. پیش‌بینی پتانسیل توزیع گونه حرا ((Avicennia marina در محدوده جنگل ‌های مانگرو جنوب ایران با استفاده از متغیرهای زیست شیمیایی. نشریه علمی - پژوهشی اقیانوس شناسی. 1398; 10 (40) :55-63

URL: http://joc.inio.ac.ir/article-1-1530-fa.html



دوره 10، شماره 40 - ( 1398 ) برگشت به فهرست نسخه ها
نشریه علمی پژوهشی اقیانوس شناسی Journal of Oceanography
Persian site map - English site map - Created in 0.1 seconds with 30 queries by YEKTAWEB 4282