:: Volume 11, Issue 41 (2020) ::
2020, 11(41): 63-72 Back to browse issues page
Calculation of Spatial Variation of Bottom Friction Coefficient in the Persian Gulf
Akbar Rashidi Ebrahim Hesari , Rezvan Salami Abyaneh
Tarbiat Modares University , akbar.rashidi@modares.ac.ir
Abstract:   (2728 Views)
In this research, a modified version of three dimensional hydrostatic finite element QUODDY-4 was used to calculate the spatial variation of bottom friction coefficient in the Persian Gulf. It differs from original one in using an external module for calculation of bottom friction coefficient which was added to the model. Spatial variation of bottom friction coefficient is calculated using a hydrodynamic approach in which relation between wave friction factor and other characteristics of bottom boundary layer is described with non-dimensional parameters like surface Rossby number, Reynolds number for flow and relative inertial frequencies. Results show that friction coefficient varies from 0.0005 to 0.006 in the Persian Gulf and in most places, spatially in regions with depth more than 50 meters, its value is less than default value of this coefficient in the numerical models. Consequently, usage of the constant value for friction coefficient in shallow oceanic basins and marginal seas like the Persian Gulf needs attention and special cares.
Keywords: Persian Gulf, bottom friction coefficient, QUODDY-4 Model
Full-Text [PDF 1417 kb]   (738 Downloads)    
Type of Study: Research/ Original/ Regular Article | Subject: Physical Oceanography
Received: 2020/01/23 | Revised: 2020/11/9 | Accepted: 2020/06/20 | ePublished: 2020/09/21
References
1. Aldridge J.N., Davies A.M. 1993. A high-resolution three-dimensional hydrodynamic tidal model of the eastern Irish Sea. Journal of Physical Oceanography. 23: 207-224. https://doi.org/10.1175/1520-0485(1993)023<0207:AHRTDH>2.0.CO;2 [DOI:10.1175/1520-0485(1993)0232.0.CO;2]
2. Dolbow J., Belytscho T. 1999. Numerical integration of the Galerkin weak form in meshfree methods. Computational Mechanics. 23(3) 219-230. [DOI:10.1007/s004660050403]
3. Ethan J.K., Clint D., and Joannes J.W. 2008. Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids. Journal of Computational Physics. 227(23): 9697-9710. [DOI:10.1016/j.jcp.2008.07.026]
4. He Y., Lu X., Qiu Z., and Zhao J. 2004. Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numerical adjoint model with TOPEX/Poseidon altimeter data. Continental Shelf Research. 24: 1521-1529. [DOI:10.1016/j.csr.2004.05.008]
5. Heathershaw A.D. 1976. Measurements of turbulence in the Irish Sea benthic boundary layer. In: Mc Cave I.N. (Ed.). The Benthic Boundary Layer. Plenum Press, New York and London, 11-31. [DOI:10.1007/978-1-4615-8747-7_2]
6. Heemink A.W., Mouthaan E.E.A., Roest M.R.T., Vollebregt E.A.H., Robaczewska K.B., and Verlaan M. 2002. Inverse 3D shallow water flow modelling of the continental shelf. Continental Shelf Research. 22: 465-484. [DOI:10.1016/S0278-4343(01)00071-1]
7. Ip J.T.C., Lynch D.R. 2005. QUODDY-3 User's Manual: Comprehensive coastal circulation simulation using finite elements: Nonlinear prognostic time-stepping model. Thayer School of Engineering, Dartmouth College. Hanover. New Hampshire, Report Number NML 95-1.
8. Iranian Ports and Maritime Organization. 2011. Project of Simulation of Tidal Currents in the Persian Gulf and Oman Gulf, Hormozgan state coastal Waters.
9. Jonsson I.G. 1980. A new approach to oscillatory rough turbulent boundary layers. Ocean Engineering. 7: 109-152. [DOI:10.1016/0029-8018(80)90034-7]
10. Kagan B.A. 2003. On the resistance law for an oscillatory, rotating, rough turbulent flow. Izvestiya Atmospheric and Oceanic Physics. 39: 754-757.
11. Kagan B.A. 2005. On the resistance law for an oscillatory rotating turbulent bottom boundary layer over incompletely rough and smooth surfaces. Izvestiya Atmospheric and Oceanic Physics. 41: 768-774.
12. Kagan B.A., Romanenkov D.A. 2006. Effect of hydrodynamic properties of the sea bottom on the tidal dynamics in a rectangular basin. Izvestiya Atmospheric and Oceanic Physics. 42: 777-784. [DOI:10.1134/S0001433806060120]
13. Kagan B.A., Timofeev A.A. 2005. Dynamics and energetics of surface and internal semidiurnal tides in the White Sea. Izvestiya Atmospheric and Oceanic Physics. 41: 498-512.
14. Kagan B.A., Sofina E.V., and Rashidi E.H.A. 2012. The impact of the spatial variability in bottom roughness on tidal dynamics and energetics, a case study: the M2 surface tide in the North European Basin. Ocean Dynamics. 62: 1425-1442. [DOI:10.1007/s10236-012-0571-3]
15. Kagan B. A., Timofeev A. A., and Rashidi E.H.A. 2012. Effect of Spatial Inhomogeneity of the Resistance Coefficient on the Dynamics of the M2 Tidal Wave in the White Sea. Izvestiya Atmospheric and Oceanic Physics. 48: 487-500. [DOI:10.1134/S000143381204010X]
16. Kagan B.A., Sofina E.V., and Rashidi E.H.A. 2013. Influence of the White Sea on Tides in Adjacent Marginal Seas of the North European Basin. Izvestiya Atmospheric and Oceanic Physics. 49: 107-123. [DOI:10.1134/S0001433812060059]
17. Lu X., Zhang J. 2006. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Continental Shelf Research. 26: 1905-1923. [DOI:10.1016/j.csr.2006.06.007]
18. Lynch D.R. 1990. Three-dimensional diagnostic model for baroclinic, wind-driven and tidal circulation in shallow seas. FUNDY 4 User's Manual, Dartmouth College, Hanover, New Hampshire. Report Number NML-90-2.
19. Lynch D.R., Werner F.E., Greenberg D.A., and Loder J.W. 1992. Diagnostic model for baroclinic and wind-driven circulation in shallow seas. Continental Shelf Research. 12: 37-64. [DOI:10.1016/0278-4343(92)90005-5]
20. Lynch, D. R., Holboke M.J. 1997. Normal flow boundary conditions in 3D circulation models. International Journal for Numerical Methods in Fluids. 25(10):1185-1205. https://doi.org/10.1002/(SICI)1097-0363(19971130)25:10<1185::AID-FLD615>3.0.CO;2-V [DOI:10.1002/(SICI)1097-0363(19971130)25:103.0.CO;2-V]
21. Marchuk G.I., Kagan B.A. 1991. Dynamics of Ocean Tides. Gidrometeoizdat, Leningrad. 472p.
22. Ranji Z. Soltanpour M. 2014. Accurate of Persian Gulf Hydrodynamic Current model using automated calibration. Proceedings of 11th International Conference on Coasts, Ports and Marine Structures, 24 November 2014, Tehran, Iran.
23. Reynolds R. M. 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman - Results from the Mt Mitchell expedition. Marine Pollution Bulletin. 27: 35-59. [DOI:10.1016/0025-326X(93)90007-7]
24. Sadri Nasab M. 2010. Three Dimensional Numerical Modeling of Circulation in the Strait of Hormuz. Journal of Oceanography, Vol. 1, Issue 1, pp. 19-24.
25. Sternberg R.W. 1993. Friction factors in tidal channels with differing bed roughness. Marin Geology. 6: 243-260. [DOI:10.1016/0025-3227(68)90033-9]
26. Sternberg, R. W. 1972. Predicting initial motion and bed load transport of sediment particles in the shallow marine environment. In: D. J. P. Swift, D. B. Duane, and O. H. Pilkey (eds.), Shelf Sediment Transport. Dowden, Hutchinson and Ross, Stroudsburg, Pa., pp. 61-82.
27. Taylor G.I. 1919. Tidal friction in the Irish Sea. Philosophical Transactions of the Royal Society. London, A220: 1-33.
28. Thurman H.V. 1994. Introductory Oceanography. Seventh edition. New York, NY: Macmillan. pp. 252-276.
29. Wang Q. 2008. Finite element modeling of tides and currents of the Pascagoula River. Doctoral dissertation, University of Central Florida Orlando, Florida.



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 41 (2020) Back to browse issues page