[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 9, Issue 35 (2018) ::
joc 2018, 9(35): 49-60 Back to browse issues page
Tracing Water Masses in the Gulf of Aden Using a Passive Tracer
Rahele Shafiee Sarvestani , Masoud Sadrinasab * , Mohammad Akbarinasab
Tehran University , masoud.sadri@gmail.com
Abstract:   (418 Views)
In the present study, the Aden Gulf water masses have been detected using a concentration passive tracer with the MITgcm model. The modeling domain is in the range 0.5°N-30°N, 44°E-77°E. The initial data (Temperature, salinity, wind, net heat flux, evaporation and precipitation) is appropriate to the model and modeling has been run for 20 years. Comparing the results of the model with the measured data shows a good agreement. The results of modeling indicate that there are three water masses up to 900 meters deep (modeled depth) in the Gulf of Aden. The Aden Gulf surface water mass is to the depth of 100-200 meters with a maximum salinity of 37 psu and density of 1023-1024 kg/m3. The water mass of the Aden Gulf's intermediate layers with the salinity of 35.9 to 36.9 psu and density of 1024-1026 kg/m3 at a depth of 100-600 m and deep water mass with salinity of 35.9-36.9 psu and density 1026-1027.5 kg/m3 located at depths of 400-900 meters and below. The horizontal density gradient due to salinity changes between the deep salty water and the low salty water of the Gulf of Aden leads to the creation of baroclinic instability. The calculation of the density ratio represents the establishment of a thermohaline convective regime between the Gulf of Aden water masses. The results of the release of passive tracer with a concentration of 100% in the Gulf of Aden from surface to depth also confirm the existence of three water masses. The surface plume spread to the length of the 46°E after 270 days under the influence surface currents of the Gulf of Aden. The output of plume at depths of 200 and 400 meters in two northern and southern channels extended to 47°E after 270 days in the Gulf of Aden. The critical width of the deep water flow for separation from the coastal boundary was calculated, by calculating the radius of Rossby deformation, as 30.25 km in the winter and 50.4 km in the summer.
Keywords: Passive tracer, MITgcm, Surface water mass, Intermediate, Deep water, Baroclinic instability, Entrainment, Gulf of Aden
Full-Text [PDF 101 kb]   (147 Downloads)    
Type of Study: Research | Subject: Physical Oceanography
Received: 2018/09/18 | Accepted: 2018/11/4 | ePublished: 2018/12/15
References
1. Adcroft, A.; Campin, J.M.; Dutkiewicz, S.; Evangelinos, C.; Ferreira, D.; Forget, G.; Fox-Kemper, B.; Heimbach, P.; Hill, C.; Hill, F.; Hill, H.; Jahn, O.; Losch, M.; Marshall, J.; Maze, G.; Menemenlis, D.; Molod, A., 2018. MIYgcm user manual. mitgcm.org/public/r2_manual/final/online_documents/manual.html. 415P.
2. Alessi, C.A.; Hunt, H.D.; Bower, A.S., 1999. Hydrographic data from the U.S. naval oceanographic office: Persian Gulf, Southern Red Sea, and Arabian Sea 1923-1996. Woods Hole Oceanographic Institution, USA. 74P. [DOI:10.1575/1912/78]
3. Beal, L.M.; Molinari, R.L.; Chereskin, K.; Robbins, P.E., 2000. Reversing bottom circulation in the Somali basin. Journal of Geophysics Research Letters, 27(16): 2565-2568. [DOI:10.1029/1999GL011316]
4. Bower, A.S.; Hunt, H.D.; Price, J.F., 2000. Character and dynamics of the Red Sea and Persian Gulf outflows, Journal of Geophysical Research Atmospheres, 105(C3): 6387-6414. [DOI:10.1029/1999JC900297]
5. Bower, A.S.; Johns, W.E.; Fratantoni, D.M.; Peters, H., 2005. Equilibration and circulation of Red Sea outflow water in the western Gulf of Aden. Journal of Physical Oceanography, 35(11): 1963-1985. [DOI:10.1175/JPO2787.1]
6. Cember, R.P., 1988. On the sources, formation, and circulation of Red Sea deep water. Journal of Geophysical Research, 93(C7): 8175-8191. [DOI:10.1029/JC093iC07p08175]
7. Emery, W.J., 2003. Ocean circulation/water types and water masses. University of Colorado, Boulder. 1556P. [DOI:10.1016/B0-12-227090-8/00279-7]
8. Hundsdorfer, W.; Trompert, R.A., 1994. Method of lines and direct discretization: a comparison for linear advection. Applied Numerical Mathematics, 13(6): 469-490. [DOI:10.1016/0168-9274(94)90009-4]
9. Khimitsa, V.A., 1968. The hydrological structure of the waters of the Gulf of Aden. Journal of Oceanology, 8: 318-322.
10. Mohamed, E.E.E.; Sharaf El-Din, S.H.; El-Gindy, A.A.H., 1996. Dynamic and hydrographic structure in the Red Sea and Gulf of Aden. In: Present and Future of Oceanographic Programs in Developing Countries,Vienna and Honolulu. Durvasula,-S.V., Visakhapatnam-India Andhra-University, 105(C3): 78-101.
11. Mohamed, E.E.E., 1997. On the variability, potential energy, potential temperature, salinity and currents in NW Indian Ocean and Gulf of Aden. JKAU Marine Montgomery, 8: 47-65. [DOI:10.4197/mar.8-1.3]
12. Nasser, G.A., 1992. Seasonal changes in the water characteristics of upper 1000 m in the northern Gulf of Aden. Scientific Investigation of the Gulf of Aden. Marine Science and Resources Reserch, 2: 51-77.
13. Phillips, O.M.,1966. On turbulent convection currents and the circulation of the Red Sea. Journal of Deep-Sea Research, 13(6): 1149-1160. [DOI:10.1016/0011-7471(66)90706-6]
14. Pickard, G.L.; Emery, W.J., 1982. Descriptive physical oceanography. Oxford Pergamon, USA. 560P.
15. Piechura, J.; Sobaih, O.A.G., 1986. Oceanographic conditions of the Gulf of Aden. In scientific investigation of the Gulf of Aden Series A Oceanography. Science and Resources Research Center, Aden Republic of Yemen, 2: 1-26.
16. Rochford, D.J., 1964. Salinity maximum in the upper 100 meters of the north Indian Ocean. Journal of Marine Freshwater Reserch, 15: 1-24. [DOI:10.1071/MF9640001]
17. Ruddick, B.; Hebert, D., 1988. The mixing of meddy Sharon. In: Small-scale turbulence and mixing in the Ocean, J.C.J. Nihoul and B.M. Jamart (eds), Elsevier Science Publish, 249-261P. [DOI:10.1016/S0422-9894(08)70551-8]
18. Saafani, M.A.A.; Shenoi, S.S.C., 2007. Water masses in the Gulf of Aden. Journal of Oceanography, 63(1): 1-14. [DOI:10.1007/s10872-007-0001-1]
19. Shapiro, G.; Meschanov, S.L., 1991. Distribution and spreading of Red Sea water and salt lens formation in the northwest Indian Ocean. Deep Sea Research Part A Oceanographic Research Papers, 38(1): 21-34 [DOI:10.1016/0198-0149(91)90052-H]
20. Stephen A.M.; Howard, C.S., 1993. Discriminating salt fingering from turbulence-induced microstructure. Analysis of towed temperature–conductivity chain data. Journal of Physical Oceanography, 23 (9): 2073-2106. https://doi.org/10.1175/1520-0485(1993)023<2073:DSFFTI>2.0.CO;2 [DOI:10.1175/1520-0485(1993)0232.0.CO;2]
21. Schott, F.; Swallow, J.C.; Fieux, M., 1990. The Somali current at the equator: annual cycle of currents and transports in the upper 1000 m and connection to neighboring latitudes. Deep-Sea Research, 37(12): 1825-1848. [DOI:10.1016/0198-0149(90)90080-F]
22. Stern, M.E., 1980. Geostrophic fronts, bores, breaking and blocking waves, Journal of Fluid Mechanic, 99(4): 687-704. [DOI:10.1017/S0022112080000833]
23. Matt, S.; Johns, W.E., 2007. Transport and entrainment in the Red Sea outflow plume. Journal of Physical Oceanography, 37: 819-836. [DOI:10.1175/JPO2993.1]
24. Tomczak, M.; Godfrey, J.S., 2001. Regional oceanography: an Introduction. Pergamon Press, Australia. 364P.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA code



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shafiee Sarvestani R, Sadrinasab M, Akbarinasab M. Tracing Water Masses in the Gulf of Aden Using a Passive Tracer . joc. 2018; 9 (35) :49-60
URL: http://joc.inio.ac.ir/article-1-1291-en.html


Volume 9, Issue 35 (2018) Back to browse issues page
نشریه علمی پژوهشی اقیانوس شناسی Journal of Oceanography
Persian site map - English site map - Created in 0.09 seconds with 32 queries by YEKTAWEB 3855