Assessment of Assimilation and Elimination of Silver and TiO$_2$ Nanoparticles in *Artemia franciscana* in Different Salinities

Tavana, Mina1; Kalbassi, Mohammad Reza2*; Abedian Kenari, Abdolmohammad3; Johari, Seyed Ali4

1- M.Sc., Department of Aquaculture, Marine Sciences Faculty, Tarbiat Modares University, Mazandaran, Noor, Iran. Email: tavana.tu.ac.ir@gmail.com
2- Professor, Department of Aquaculture, Marine Sciences Faculty, Tarbiat Modares University, Mazandaran, Noor, Iran. Email: kalbassi_m@modares.ac.ir
3- Associated Professor, Department of Aquaculture, Marine Sciences Faculty, Tarbiat Modares University, Mazandaran, Noor, Iran. Email: aabedian@yahoo.co.uk
4- Assistant Professor, Fisheries Department, Natural Resources Faculty, University of Kurdistan, Iran. Email: sajohari@gmail.com

Received Date: July 6, 2013 *Corresponding Author Accepted Date: July 12, 2014

© 2014 Oceanography. All rights reserved.

Abstract

Artemia is a passive filter-feeder organism that uptakes particles between 1-50 micron without selection. In this study, potential of *Artemia franciscana* for nano particles assimilation and release in different salinities were investigated. *Artemia nauplii* were exposed to colloidal silver nano particles (32 mg/l) as well as TiO$_2$ nano particles (100 mg/l) for 12 and 48 hours, respectively. Treated *Artemia nauplii* were collected and dried and the uptake rate of nanoparticles was measured by atomic absorption analysis. Also, to examine the elimination rate of adsorbed nano materials in nauplises, treated *Artemia* were returned to freshwater and were sampled after 5, 15, 30, 60, and 120 minutes, the release rate of nano materials was measured and 35, 70, 105 and 140 mg/l salinities was investigated in periods of 2, 6, 24, 48, 72 and 96 hours by spectrophotometer by furnace atomic absorption analysis. The results of silver and TiO$_2$ nano particles absorption indicated that the uptake of TiO$_2$ (68.16±38.18) has been significantly higher than metal silver ion (2.13 ±1.79) (P<0.05). In addition, the release rate of silver ion in comparison with titanium ion in nauplises were returned to freshwater has been higher significantly (P<0.05).

Moreover, the results of 24 h spectrophotometry showed that the silver ion deposition rate was increased by increasing salinity. Regarding the TiO$_2$ with concentration of 100 mg/l, in the salinity of 70 mg/l, although, the deposition and aggregation rate in solution phase increased, the deposition rate of particles reached the maximum rate in 105 and 140 mg/l salinities. Conclusion of this research confirmed that, in the presence of silver or TiO$_2$ nano particles in natural habitats of artemia or in the culture media with different salinities, a part of this nano materials deposited in salt waters and the rest would be absorbed by this organism which could be transmitted to the next consumer of *Artemia*.

Keywords: Uptake and release, Silver and TiO$_2$ nanoparticles, *Artemia franciscana*, Salinity.